Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:46:27.494Z Has data issue: false hasContentIssue false

Multilayer Self-Assemblies as Electronic and Optical Materials

Published online by Cambridge University Press:  10 February 2011

DeQuan Li
Affiliation:
Chemical Science and Technology Division (CST-4) and Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545
M. Lütt
Affiliation:
Chemical Science and Technology Division (CST-4) and Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545
Xiaobo Shi
Affiliation:
Chemical Science and Technology Division (CST-4) and Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545
M. R. Fitzsimmons
Affiliation:
Chemical Science and Technology Division (CST-4) and Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The layer-by-layer growth of film structures consisting of sequential depositions of oppositely charged polymers and macrocycles (ring-shaped molecules) have been constructed using molecular self-assembly techniques. These self-assembled thin films were characterized with X-ray reflectometry, which yielded (1) the average electron density, (2) the average thicknesses, and (3) the roughness of the growth surface of the self-assembled multilayer of macrocycles and polymers. These observations suggest that inorganic-organic interactions play an important role during the initial stages of thin-film growth, but less so as the thin film becomes thicker. Optical absorption techniques were also used to characterize the self-assembled multilayers. Phorphyrin and phthalocyanine derivatives were chosen as the building blocks of the self-assembled multilayers because of their interesting optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, D. Q.; Ratner, M. A.; Marks, T. J.; Zhang, C. H.; Yang, J.; Wong, G. K. J. Am. Chem. Soc. 1990, 112, 7389.Google Scholar
2. Labinis, P. E.; Hickman, J. J.; Wrighton, M. S.; Whiteside, G. M. Sci. 1989, 245, 845.Google Scholar
3. Decher, G. Hong, J. D. Schmitt, J. Thin Solid Films, 1992, 210, 831835.Google Scholar
4. (a) Cheung, J. H.; Fou, A. F.; Rubner, M. F. Thin Solid Films 1994, 244, 985. (b) Yoo, D.; Lee, J-K.; Rubner, M. F. Mat. Res. Soc. Symo. Proc., 1996, 413, 395.Google Scholar
5. Lutt, M.; Fitzsimmons, M.; Li, D. Q. J. Phys. Chem. B, 1998, 102, 400405.Google Scholar
6. Ariga, K.; Lvov, Y.; Kunitake, T. J. Am. Chem. Soc. 1997, 119, 2224.Google Scholar
7. Parratt, L.G. Phys Rev. 1954, 95, 359.Google Scholar
8. Lekner, J. Theory of Reflection, Nijhoff, Dordrecht, 1987.Google Scholar
9. Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes, Cambridge University Press, Cambridge, 1986.Google Scholar
10. Bruegemann, L.; Bloch, R.; Press, W.; Gerlach, P. J Phys. C 1990, 2, 8869.Google Scholar
11. Fuoss, P.H.; Norton, L.J.; Brennan, S.; Fischer-Colbrie, A. Phys. Rev. Lett. 1988, 60, 600.Google Scholar
12. Nitz, V.; Tolan, M.; Schlomka, J.-P.; Seeck, O. H.; Stettner, J.; Press, W.; Stelzle, M.; Sackmann, E. Phys. Rev. B 1996, 54, 5049.Google Scholar
13. Data covering a larger range of Qz could be taken but only with the aid of a synchrotron source. Such measurements are planned for the future.Google Scholar
14. Kellogg, G. J. Mayes, A. M. Stockton, W. B. Ferreira, M. Rubner, M. F.; Satija, S. K. Langmuir, 1996, 12, 5109.Google Scholar