Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T16:55:12.941Z Has data issue: false hasContentIssue false

Multi-Hundred Gigahertz Photodetector Development Using LT GaAs

Published online by Cambridge University Press:  15 February 2011

Y. Chen
Affiliation:
Ultrafast Science Laboratory, University of Michigan, Ann Arbor, MI 48109-2099 (Current address: AT&T Bell Laboratories, Holmdel, NJ 07733)
S. Williamson
Affiliation:
Ultrafast Science Laboratory, University of Michigan, Ann Arbor, MI
T. Brock
Affiliation:
Ultrafast Science Laboratory, University of Michigan, Ann Arbor, MI
F. W. Smith
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173-9108
A. R. Calawa
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173-9108
Get access

Abstract

We report on the development of a new, integrable photoconductive-type detector based on low-temperature-grown GaAs. The detector has a response time of 1.2 ps and a 3-dB bandwidth of 375 GHz. The responsivity is 0.1 A/W. This is the fastest photodetector reported to date. We discuss the unique properties of this device, including its performance as functions of both light intensity and bias voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zeghbroek, J. Van, Patrick, W., Halbout, J-M., and Vettiger, P., IEEE Electron Device Lett. 9, 527 (1988).10.1109/55.17833Google Scholar
2.Koscielniak, W. C., Pelouard, J. L., and Littlejohn, M. A., Appl. Phys. Lett. 54 567 (1989).10.1063/1.100933Google Scholar
3.Koscielniak, W. C., Pelouard, J. L., and Littlejohn, M. A., IEEE Photon. Technol. Lett. 2 125 (1990).Google Scholar
4.Smith, F. W., Le, H. Q., Diadiuk, V., Hollis, M. A., Calawa, A. R., Gupta, S., Frankel, M., Dykaar, D. R., Mourou, G. A., and Hsiang, T. Y., Appl. Phys. Lett. 54. 890 (1989).Google Scholar
5.Motet, T., Nees, J., Williamson, S., and Mourou, G., Appl. Phys. Lett. 59, 1455 (1991).10.1063/1.105286Google Scholar
6.Whitaker, J. F., Valmanis, J. A., Frankel, M. Y., Gupta, S., Chwalek, J. M., and Mourou, G. A., Microelectron. Eng. 12 369 (1990).10.1016/0167-9317(90)90050-4Google Scholar
7.Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 746.Google Scholar
8.Grischkowsky, D. R., Ketchen, M. B., Chi, C-C., Duling, I. N. III, Halas, N. J., Halbout, J-M., IEEE J. Quantum Electron. 24. 221 (1988).Google Scholar
9.Frankel, M. Y., Whitaker, J. F., Mourou, G. A., Smith, F. W., Calawa, A. R., IEEE Trans. Electron Devices 37. 2493 (1990).Google Scholar
10.Gupta, S., Pamulatpati, J., Chwalek, J., Bhattacharya, P. K., and Mourou, G., in Ultrafast Phenomena VII. edited by Harris, C. B., Ippen, E. P., Mourou, G. A., and Zewail, A. H. (Springer-Verlag, Berlin, 1990), p. 297.10.1007/978-3-642-84269-6_90Google Scholar
11.Soole, J. B. D. and Schumacher, H., IEEE Trans. Electron Devices 37, 2285 (1990).Google Scholar
12.Gupta, S., Whitaker, J. F., and Mourou, G. A., to be published in IEEE Microwave Guided Wave Lett. 1, 161, (1991).Google Scholar
13.Moglestue, C., Rosenzweig, J., Kuhl, J., Klingenstein, M., Lambsdorff, M., Axmann, A., Jo., Schneider, and Hulsmann, A, J. Appl. Phys. 70, 2435 (1991).Google Scholar
14.Rogers, D. L.,Picosecond Electronics and Optoelectronics II, edited by Leonberger, F. J., Lee, C. H., Capasso, F., and Morkoç, H. (Springer-Verlag, Berlin, 1987).Google Scholar
15.Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 45.Google Scholar