Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:15:58.784Z Has data issue: false hasContentIssue false

Multigeneration Effects of Plasma Irradiation to Seeds of Arabidopsis Thaliana and Zinnia on Their Growth

Published online by Cambridge University Press:  29 January 2015

Thapanut Sarinont
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Takaaki Amano
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Kazunori Koga
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Masaharu Shiratani
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Nobuya Hayashi
Affiliation:
Interdisciplinary Graduate School of Engineering Science, Kyushu University 6-1 Kasuga-kouen, Fukuoka, 816-8580, Japan
Get access

Abstract

We have studied multigeneration effects of plasma irradiation to seeds of Arabidopsis thaliana (L.) and Zinnia peruviana (L.) on their growth using a scalable DBD device. Atmospheric plasma irradiation enhances growth of these plants in multi-generations. For Arabidopsis thaliana (L.) in the third generation, the leaf area is 2 times larger than that without plasma irradiation and the stem length is 1.5 times longer than that without plasma. For Zinnia peruviana (L.) in the second generation, the stem length is 2 times longer than that without plasma.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fridman, G., Friedman, G., Gutsol, A., Shekhter, A. B., Vasilets, V. N., and Fridman, A., Plasma Process. Polym., 5, 503 (2008).CrossRefGoogle Scholar
Kitazaki, S., Yamashita, D., Matsuzaki, H., Uchida, G., Koga, K., and Shiratani, M., Proc. IEEE TENCON, 1960 (2010).Google Scholar
Hayashi, N., Nakahigashi, A., Goto, M., Kitazaki, S., Koga, K., and Shiratani, M., Jpn. J. Appl. Phys., 50, 08JF04 (2011).CrossRefGoogle Scholar
Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N., Jpn. J. Appl. Phys., 51, 01AE01 (2012).CrossRefGoogle Scholar
Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N.: MRS Proc., 1469, mrss12-1469-ww0208 (2012).Google Scholar
Kitazaki, S., Sarinont, T., Koga, K., Shiratani, M., and Hayashi, N., Curr. Appl. Phys., 14, 149 (2014).CrossRefGoogle Scholar
Sarinont, T., Koga, K., Kitazaki, S., Uchida, G., Hayashi, N., and Shiratani, M., J. Phys.: Conf. Series, 1, 015078 (2014).Google Scholar
Hayashi, N., Nakahigashi, A., Goto, M., Kitazaki, S., Koga, K., and Shiratani, M.: Jpn. J.Appl. Phys., 50, 08JF04 (2011).CrossRefGoogle Scholar
Heacock, M., Spangler, E., Riha, K., Puizina, J., and Shipper, D. E., The Embo J., 23, 2304 (2004).CrossRefGoogle Scholar
Roux, F., Camilleri, C., Bérard, A., and Reboud, X., Evolution Biology, 59, 2264 (2005).Google Scholar
Rutter, M., Shaw, F. H., and Fenster, C. B., Evolution Biology, 64, 1825 (2010).Google Scholar
Ogawa, K. and Iwabushi, M., Plant Cell Physiol., 42, 286 (2001).CrossRefGoogle Scholar
Uzal, E. N., Pérez, F. F., Herrero, J., Gutiérrez, J., Gómez-Ros, L. V., Bernal, M., Cuello, J., Pomar, F., and Pedreño, M., J. Exp. Bot., 64, 3499 (2013).CrossRefGoogle Scholar