No CrossRef data available.
Article contents
MTU Laser-Based Direct-Write Techniques: Recent Development and Nanoparticles Patterning Results
Published online by Cambridge University Press: 11 February 2011
Abstract
Two laser-based direct-write techniques to guide particles from a mist source to a target substrate by laser beams were recently developed at Michigan Tech. The laser-guided direct-write (LGDW) technique uses a hollow optical fiber, while the laser-guided microsensor patterning (LGMP) technique uses a micrometer-sized aperture. The techniques are suggested to be utilized for patterning microstructures made of nanoparticles that are either crystallized from liquid precursors or directly deposited from nanoparticle-in-liquid suspensions. The computational results based on the paraxial Fraunhofer approximation of a Gaussian beam diffracted by a circular aperture and experimental measurements of corresponding deposition rate under different conditions suggest several factors for setup optimization of LGMP. The results indicate that among the most important factors are the aperture size relative to the laser beam-waist size and the divergence of the beam near the aperture. Examples of gold-thiolate, protein-coated polystyrene, and carbon-polymer composites deposition are presented.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003