Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:47:58.739Z Has data issue: false hasContentIssue false

Mott Transition Field Effect Transistor: Experimental Results

Published online by Cambridge University Press:  10 February 2011

A. G. Schrott
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
J. A. Misewich
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
B. A. Scott
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
A. Gupta
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
D. M. Newns
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
D. Abraham
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598.
Get access

Abstract

In this paper we describe the fabrication of oxide based devices similar in architecture to a conventional FET with source, drain, and gate electrodes and a channel. This distinctive characteristic of our device is the use of a channel material capable of undergoing a field-induced Mott insulator-metal transition at room temperature. Lithographic techniques developed for oxide materials have been combined with pulsed laser deposition of perovskite materials onto single-crystal strontium titanate (STO) substrates to fabricate these devices. Materials chosen for the Mott transition channel include La2CuO4 (LCO) and YBCO, p-type; and Nd2CuO4, n-type.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mott, N., Metal Insulator Transitions, Taylor & Francis, London, 1990.10.1201/b12795Google Scholar
2. Zhou, C., Newns, D.M., Misewich, J.A., and Pattnaik, P.C., Appl. Phys. Lett. 70, p. 598 (1997).10.1063/1.118285Google Scholar
3. Newns, D.M., Misewich, J.A., Tsuei, C.C., Gupta, A., Scott, B.A., and Schrott, A.G., Appl. Phys Lett. 73, p. 78 0 (1998).10.1063/1.121999Google Scholar
4. Levy, A., Falck, J.P., and Kastner, M.A., Gallagher, W.J., Gupta, A., and Kleinsasser, W., J. Appl. Phys. 69, p. 4439 (1991).10.1063/1.348373Google Scholar
5. Ogale, S.B., Talyansky, V., Chen, C.H., Ramesh, R., Greene, R.L., and Venkatesan, T., Phys. Rev. Lett. 77, p. 1159 (1996).10.1103/PhysRevLett.77.1159Google Scholar
6. Mannhart, J., Supercond. Sci. Technol. (UK) 9, p. 49 (1996).10.1088/0953-2048/9/2/001Google Scholar
7. Talyansky, V., Ogale, S.B., Takeuchi, I., Doughty, C., and Venkatesan, T., Phys. Rev. B 53, p. 14575 (1996).10.1103/PhysRevB.53.14575Google Scholar
8. Kawahara, T., Suzuki, T., Komai, E., Nakazawa, K., Terashima, T., and Bando, Y., Physica C 266, p. 149 (1996).10.1016/0921-4534(96)00308-5Google Scholar
9. Chern, M.Y., Gupta, A., Hussey, B. W., and Shaw, T.M., J. Vac. Sci. Technol. A 11, p.637 (1993).10.1116/1.578784Google Scholar
10. Peng, J.L., Klavins, R., Shelton, R.N., Radousky, H.B., Hahn, P.A., and Bernardez, L., Phys. Rev. B 40, p. 4517 (1989).10.1103/PhysRevB.40.4517Google Scholar
11. Neumeier, J.J. and Maple, M.B., Physica C 191, p. 158 (1992).10.1016/0921-4534(92)90642-PGoogle Scholar
12. Rao, C.N.R. and P. Ganduly in The metallic and oinmelallic mailer, edited by Edwards, P.P. and Rao, C.N. (Taylor & Francis, London, 1985) pp. 329–.Google Scholar
13. Sze, S.M., Physics of Semiconductor Devices, John Wiley and Sons, New York, 1981.Google Scholar