Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T03:12:22.939Z Has data issue: false hasContentIssue false

Morphology and Electron Emission Properties of Nanocrystalline CVD Diamond Thin Films

Published online by Cambridge University Press:  10 February 2011

Alan R. Krauss
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argorme IL 60439
Dieter M. Gruen
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argorme IL 60439
Daniel Zhou
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argorme IL 60439
Thomas G. Mccauley
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argorme IL 60439
Lu Chang Qin
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argorme IL 60439
Timothy Corrigan
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argorme IL 60439
Orlando Auciello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne IL 60439
R. P. H. Chang
Affiliation:
Materials Science Dept., Northwestern University, Evanston IL 60208
Get access

Abstract

Nanocrystalline diamond thin films have been produced by microwave plasma-enhanced chemical vapor deposition (MPECVD) using C60/Ar/H2 or CH4/Ar/H2 plasmas. Films grown with H2 concentration ≤ 20% are nanocrystalline, with atomically abrupt grain boundaries and without observable graphitic or amorphous carbon phases. The growth and morphology of these films are controlled via a high nucleation rate resulting from low hydrogen concentration in the plasma. Initial growth is in the form of diamond, which is the thermodynamic equilibrium phase for grains < 5 nm in diameter. Once formed, the diamond phase persists for grains up to at least 15–20 nm in diameter. The renucleation rate in the near-absence of atomic hydrogen is very high (∼1010 cm2sec−1), limiting the average grain size to a nearly constant value as the film thickness increases, although the average grain size increases as hydrogen is added to the plasma. For hydrogen concentrations less than ∼20%, the growth species is believed to be the carbon dimer, C2, rather than the CH3* growth species associated with diamond film growth at higher hydrogen concentrations. For very thin films grown from the C60 precursor, the threshold field (2 to ∼60 volts/micron) for cold cathode electron emission depends on the electrical conductivity and on the surface topography, which in turn depends on the hydrogen concentration in the plasma. A model of electron emission, based on quantum well effects at the grain boundaries is presented. This model predicts promotion of the electrons at the grain boundary to the conduction band of diamond for a grain boundary width ∼3–4 Å, a value within the range observed by TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Belton, D. N. and Harris, S. J., J. Chem. Phys. 96, 2371 (1992);Google Scholar
Harris, S. J. and Goodwin, D. G., J. Phys. Chem 97, 23 (1993)Google Scholar
2. Bachmann, P. K., Hagemann, H. J., Lade, H., Leers, D., Weichen, D. U., Wilson, H., Fournier, D., and Plamann, K., Diamond and Related Materials, 4, 820 (1995)Google Scholar
3. Zhu, W., Kochanski, G. P., Jin, S., Seibles, L., Jacobson, D. C., McCormack, M., and White, A. E. Applied Phys. Lett., 67, 1157, 1995 Google Scholar
4. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994)Google Scholar
5. Gruen, D. M., Liu, S., Krauss, A. R. and Pan, X., J. Appl. Phys. 75, 1758 (1994)Google Scholar
6. Csencsits, R., Gruen, D.M., Krauss, A.R. and Zuiker, C., Mat. Res. Soc. Symp. Proc. 403, 291 (1996)Google Scholar
7. Redfern, P.C., Horner, D.A., Curtiss, L.A. and Gruen, D.M., J. Phys. Chem. 100, 11654 (1996)Google Scholar
8. Gruen, D.M., Zuiker, C.D., Krauss, A.R., and Pan, X., J. Vac. Sci. Technol. A13, 1628 (1995)Google Scholar
9. Gruen, D. M., Krauss, A. R., Zuiker, C. D., Terminello, L., Carlisle, J. A., Jiminez, I., Sutherland, D. G. J., Slum, D. K., Tong, W., and Himpsel, F. J., Appl. Phys. Lett. 68, 1640 (1996)Google Scholar
10. Zuiker, C. D., Krauss, A. R., Gruen, D. M., Carlisle, J. A., Terminello, L. J., Asher, S. A., and Bormett, R. W.. Mat. Res. Soc. Proc. 437, 211 (1996)Google Scholar
11. Csencsits, R., Zuiker, C.D., Gruen, D.M., Krauss, A. R., Sol. St. Phenom. 51–52, 261 (1996)Google Scholar
12. Zuiker, C.D., Gruen, D.M. and Krauss, A.R., Proc. 187th Symp. Electrochem Soc, Reno Nevada, May 21–26, 1995 Google Scholar
13. Bar-Yam, Y. and Moustakas, T. D., Nature 342, 786 (1989)Google Scholar
14. Bernholc, J., Antonelli, A., Sel-Sole, T. M., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 61, 2689 (1988)Google Scholar
15. Lykke, K. R., Phys. rev. A 52, 1354 (1995)Google Scholar
16. Kee, R. J., Rupley, F. M., and Miller, J. A., Sandia National Laboratories Report No. SAND-8215B and SAND 89–8009BGoogle Scholar
17. Goyette, A. N., Lawler, J. E., Anderson, L. W., Gruen, D. M., McCauley, T. G., Zhou, D., and Krauss, A. R., submitted to Plasma Sources Science and Technology, in pressGoogle Scholar
18. Goyette, A. N., Lawler, J. E., Anderson, L. W., Gruen, D. M., McCauley, T. G., Zhou, D., and Krauss, A. R., submitted to J. Phys. DGoogle Scholar
19. Wang, C., Garcia, A., Ingram, D.C., Lake, M., and Kordesch, M.E., Electron Lett. 27, 1459 (1991)Google Scholar
20. Xu, N. S., Tzeng, Y., and Latham, R. V., J. Phys. D26, 1776 (1993)Google Scholar
21. Geis, M. W., Twichell, J. C., Efremov, N. N., Krohn, K., and Lyszcarsz, T. M., Appl. Phys. Lett. 68, 2294 (1996)Google Scholar
22. Givargizov, E. I., Shirnov, V. V., Stepanova, A. N., Rakova, E. V., Kiselev, A. N., and Plekhanov, P. S., Appl. Surf. Sci. 87/88, 24 (1995)Google Scholar
23. Schlesser, R., McClure, M.T., Choi, W.B., Hren, J.J., and Sitar, Z., Appl. Phys. Lett. 70, 1596 (1997)Google Scholar
24. Nützenadel, C., Küttel, O.M., Gröning, O., and Schlapbach, L., Appl. Phys. Lett. 69, 2662, (1996)Google Scholar
25. Bruley, J., Williams, D. B., Cuomo, J. J. and Pappas, D. P., J. Microscopy 180, 22 (1995)Google Scholar
26. Robertson, J. and Milne, W. I., Mat. Res. Soc. Symp 424, 381 (1997)Google Scholar
27. Himpsel, F.J., Knapp, J.A., Van Vechten, J.A. and Eastman, D.E., Phys. rev. B 20, 624 (1979)Google Scholar
28. Bandis, C. and Pate, B.B., Appl. Phys. Lett. 69, 366 (1996)]Google Scholar
29. Choi, W.B., McClure, M.T., Schlesser, R., Sitar, Z. and Hren, J.J., J. de Physique IV 6, C597 (1996)Google Scholar
30. Robertson, J., Phys. Rev. B, in pressGoogle Scholar
31. Zuiker, C D., Gruen, D. M. and Krauss, A. R., J. Appl. Phys. 79, 3541 (1996)Google Scholar
32. Gröning, O., Küttel, O.M., Schaller, E., Gröning, P., and Schlapbach, L., Applied Physics Letters, 69, 476 (1996)Google Scholar
33. McCauley, T.G., Corrigan, T.D., Krauss, A.R., Auciello, O., Zhou, D., Gruen, D.M., Temple, D., Chang, R.P.H., English, S., and Nemanich, R., In press: Proc. Mater. Res. Soc. 1997 Fall Meeting, Boston, MA Dec. 1–5, 1997 Google Scholar
34. Keblinsky, P., Wolf, D., Philpott, S., and Gleiter, H., J. Mater. Resch., in pressGoogle Scholar