No CrossRef data available.
Article contents
Morphological Studies of Bismuth Nanostructures Prepared by Hydrothermal Microwave Heating.
Published online by Cambridge University Press: 25 May 2012
Abstract
Elemental bismuth nanoparticles and nanotubes were obtained via microwave hydrothermal synthesis starting from bismuth oxide (Bi2O3) in the range of temperatures 200-220oC for 10-45 min. The formed nanostructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Relationship between reaction parameters and shape of the formed nanostructures is discussed.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
Asthana, R.; Kumar, A.; Dahotre, N. B. (2005). Materials Processing and Manufacturing Science. 1 edition, Butterworth-Heinemann, 656 pp.
Google Scholar
Boldt, R.; Kaiser, M.; Kohler, D.; Krumeich, F.; Ruck, M. (2010). High-yield synthesis and structure of double-walled bismuth nanotubes. Nano Lett., 10, 208–210.Google Scholar
Cao, G. and Liu, D. (2008). Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science, 136(1), 45–64.Google Scholar
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1376 pp.
Google Scholar
Dresselhaus, M. S.; Lin, Y. M.; Rabin, O.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.
et al. . (2003). Nanowires and nanotubes. Mat. Sci. Engin., C, 23(1), 129–140.Google Scholar
Fryxell, G. E. and Cao, G. (2007). Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors. Imperial College Press, 520 pp.
Google Scholar
Kharisov, B. I., Kharissova, O. V., Ortiz-Mendez, U. (2012). Handbook of Less-Common Nanostructures. CRC Press, 863 pp.
Google Scholar
Kharissova, O. V. and Rangel Cardenas, J. (2007). The Microwave Heating Technique for Obtaining Bismuth Nanoparticles, in Physics, Chemistry and Application of Nanostructures, World Scientific, pp.443-446.Google Scholar
Kharissova, O.V.; Osorio, M.; Garza, M. (2007). Synthesis of bismuth by microwave irradiation. MRS Fall Meeting. Boston, MA. (November 26-30, 2007). Abstract II5.42. p.773.Google Scholar
Kharissova, O. V. and Kharisov, B. I. (2008). Nanostructurized forms of bismuth. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 38(6), 491–502.Google Scholar
Kharissova, O. V.; Osorio, M.; Kharisov, B. I.; José Yacamán, M.; Ortiz Méndez, U. (2010). A comparison of bismuth nanoforms obtained in vacuum and air by microwave heating of bismuth powder. Mater. Chem. Phys., 121, 489–496.Google Scholar
Koch, C.; Ovid’ko, I.; Seal, S.; Veprek, S. (2007). Structural Nanocrystalline Materials: Fundamentals and Applications. 1 edition, Cambridge University Press, 364 pp.
Google Scholar
Norman, N. C., Ed. (1997). Chemistry of Arsenic, Antimony and Bismuth. Springer; 1 edition. 496 pp.
Google Scholar
Owen, J. H. G.; Miki, K.; Bowler, D.R. (2006). Self-assembled nanowires on semiconductor surfaces. J. Mat. Sci.
41(14), 4568–4603.Google Scholar
Penner, R. M; Zach, M. P., Favier, F. (2007). Methods for fabricating metal nanowires. United States Patent 7220346, http://www.freepatentsonline.com/7220346.html.Google Scholar
Rasche, B.; Seifert, G.; Enyashin, A. (2010). Stability and electronic properties of bismuth nanotubes. J. Phys. Chem. C, 114, 22092–22097.Google Scholar
Sakka, S. (2004). Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications. 1 edition, Springer, 1980 pp.
Google Scholar
Soderberg, B. C. G. (2003). Transition metals in organic synthesis: highlights for the year 2000. Coord. Chem. Rev.
241(1), 147–247.Google Scholar