Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T20:21:14.228Z Has data issue: false hasContentIssue false

Morphological Effects in the Chemical and Photoluminescent Behavior of Aluminum Tris(8-Hydroxyquinoline) (Alq3)

Published online by Cambridge University Press:  10 February 2011

K. A. Higginson
Affiliation:
Department of Chemistry, Polymer Science Program, Nanomaterials Optoelectronics Laboratory, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
X.-M. Zhang
Affiliation:
Department of Chemistry, Polymer Science Program, Nanomaterials Optoelectronics Laboratory, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
F. Papadimitrakopoulos*
Affiliation:
Department of Chemistry, Polymer Science Program, Nanomaterials Optoelectronics Laboratory, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
*
*To whom correspondance should be addressed.
Get access

Abstract

Aluminum tris(8-hydroxyquinoline) (Alq3) is presently considered one of the most reliable electron transporting and emitting materials for molecular-based organic light emitting diodes (OLEDs). This paper discusses the effects of sample morphology on the hydrolysis and photoluminescence response of Alq3. The evolution of 8-hydroxyquinoline (8-Hq), a volatile byproduct of the hydrolysis of Alq3, was quantified using gas chromatography/mass spectroscopy (GC/MS) analysis on samples of different morphology. Annealed (more crystalline) samples exhibited greater chemical stability than freshly sublimed films, at the expense of photoluminescence efficiency. These phenomena are discussed with respect to possible failure mechanisms that Alq3-based OLEDs might undergo during prolonged operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Department of Chemistry, Wesleyan University, Middletown, CT 06459

References

1. Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Current Opinion in Solid State & Materials Science 1997, 2, 236.Google Scholar
2. Sheats, J. R.; Antoniadis, H.; Hueschen, M.; leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Science 1996, 273, 884.Google Scholar
3. Rothberg, L. J.; Lovinger, A. J. J. Mater. Res. 1996, 11, 3174.Google Scholar
4. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.Google Scholar
5. Shi, J.; Tang, C. W. J. Appl. Phys. 1996, 70, 1665.Google Scholar
6. VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160.Google Scholar
7. McElvain, J.; Andoniadis, H.; Hueschen, M.; Miller, J.; Roitman, D.; Sheats, J.; Moon, R. J. Appl. Phys. 1996, 80, 6002.Google Scholar
8. Antoniadis, H.; Hueschen, M. R.; McElvain, J.; Miller, J. N.; Moon, R. L.; Roitman, D. B.; Sheats, J. R. ACS Polymer Preprints 1997, 38, 382.Google Scholar
9. Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Sapochak, L. S.; McCarthy, D. M.; Thompson, M. E. Appl. Phys. Lett. 1994, 65, 2922.Google Scholar
10. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K. Appl. Phys. Lett. 1994, 65, 807.Google Scholar
11. Tanaka, H.; Tokito, S.; Taga, Y.; Okada, A. Chem. Comm. 1996, 2175.Google Scholar
12. Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1995, 68, 2697.Google Scholar
13. Sano, T. Proceedings of the Electroluminescence Workshop; Wissenschaft and Technic: Berlin, 1996, p. 196.Google Scholar
14. Han, E.-M.; Do, L.-M.; Yamamoto, N.; Fujihira, M. Thin Solid Films 1996, 273, 202.Google Scholar
15. Do, L.-M.; Han, E. M.; Niidome, Y.; Fujihira, M.; Kanno, T.; Yoshida, S.; Maeda, A.; Ikushima, A. J. J. Appl. Phys. 1994, 76, 5118:.Google Scholar
16. Joswick, M. D.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P. J. Appl. Phys. 1996, 80, 2883.Google Scholar
17. Struik, L. C. E. Physical Aging in Amorphous Polymers and Other Materials; Elsevier: 1978.Google Scholar
18. Papadimitrakopoulos, F.; Yang, M.; Rothberg, L. J.; Katz, H. E.; Chandross, E. A.; Galvin, M. E. Mol. Cryst. Liq. Cryst. 1994, 256, 663.Google Scholar
19. Chadha, S. S. In Solid State Luminescence; Kitai, A. H., Ed.; Chapman & Hall: New York, 1993; pp 159.Google Scholar
20. Higginson, K. A.; Zhang, X.-M.; Papadimitrakopoulos, F. Chem. Mater. 1997, Accepted for Publication.Google Scholar
21. Papadimitrakopoulos, F.; Zhang, X.-M.; Thomsen, D. L.; Higginson, K. A. Chem. Mater. 1996, 8, 1363.Google Scholar
22. Papadimitrakopoulos, F.; Zhang, X.-M. Synthetic Metals 1997, 85, 1221.Google Scholar
23. Ohring, M. The Materials Science of Thin Films; Academic Press: NY, 1991.Google Scholar
24. Ezrin, M.; Lavigne, G. SPE-ANTEC Proceedings 1991, 2230.Google Scholar
25. Phillips, J. P. Chem. Rev. 1956, 56, 271.Google Scholar
26. Yeh, Y.-S. J. Polym. Sci. 1990, 28, 545.Google Scholar
27. Fujihira, M.; Do, L.-M.; Koike, A.; Han, E.-M. Appl. Phys. Lett. 1996, 68, 1787.Google Scholar
28. Do, L.-M.; Oyamada, M.; Koike, A.; Han, E.-M.; Yamamoto, N.; Fujihira, M. Thin Solid Films 1996, 273, 209.Google Scholar
29. VanSlyke, S. A.; Bryan, P. S.; Tang, C. W. Proceedings of the Electroluminescence Workshop; Wissenschaft and Technic: Berlin, 1996, p. 195.Google Scholar