Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T22:49:46.950Z Has data issue: false hasContentIssue false

Morphic Architectures: Atomic-Level Limits

Published online by Cambridge University Press:  01 February 2011

Ralph Cavin
Affiliation:
[email protected], Semiconductor Research Corp., Research Operations, 1101 Slater Rd., Durham, NC, 27703, United States
Victor Zhirnov
Affiliation:
[email protected], Semiconductor Research Corp., 1101 Slater Rd., Durham, NC, 27703, United States
Get access

Abstract

In this paper, we consider a thought problem intended to force consideration of fundamental limits for energy sources, sensors, computing elements, and communication systems as fundamental system dimensions are reduced to the few micron regime. Design of integrated systems at this level are shown to literally require the allocation of atoms for the various functions. We argue that although there are no fabrication technologies for systems on this scale and the tradeoffs between system functions are extreme, systems on this scale might be feasible; given end-of ITRS technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heller, A. Anal. Bioanal. Chem. 385, 469 (2006)Google Scholar
2. Heller, A. Phys. Chem. Chem. Phys. 209, (2004)Google Scholar
3. Wu, D. Tucker, R. and Hess, H. IEEE Trans. Adv. Pack. 28, 594 (2005)Google Scholar
4. Kötz, R. and Carlen, M, Electrochem. Acta 45, 2483 (2000)Google Scholar
5. Lewandowski, A. and Galisnki, M. J. Power Syst. 173, 822 (2007)Google Scholar
6. Chandrashekhar, M. V. S. Duggirala, R. Spencer, M. G. and Lal, A. Appl. Phys. Lett. 91, 053511 (2007)Google Scholar
7. Eiting, C. J. Krishnamoorthy, V. Rodgers, S. George, T. Robertson, J. D. and Brockman, J. Appl. Phys. Lett. 88, 064101 (2006)Google Scholar
8.Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, http://physics.nist.gov/PhysRefData/Star/Text/contents.htmlGoogle Scholar
9. Klein, C. A. J. Appl. Phys. 39, 2029 (1968)Google Scholar
10. Zhirnov, V. V. Cavin, R. K. Hutchby, J. A. and Bourianoff, G. I. Proc. IEEE 91, 1934 (2003)Google Scholar
11. Cavin, R. K. and Zhirnov, V. V. “Keynote: Nano-Architecture Challenges: A Fundamental Physics Perspective”, IEEE/ACM Intern. Symp. on Nanoscale Architectures, San Jose, CA, October 21-22, 2007 Google Scholar
12. Cavin, R. K. and Zhirnov, V. V. Solid-State Electron. 50, 520 (2006)Google Scholar
13.The International Technology Roadmap for Semiconductors, 2007; http://www.itrs.net/ Google Scholar
14. Voelker, M. and Fromherz, P. Small 1, 206 (2005)Google Scholar
15. Voelker, M. and Fromherz, P. Phys. Rev. Lett. 96, 2281102 (2006)Google Scholar
16. Lichtenberger, J. and Fromherz, P. Biophysical J. 92, 2262 (2007)Google Scholar
17. Park, I. Li, Z. Y. Li, X. Pisano, A. P. and Williams, R. S. Biosensors and Bioelectron. 22, 2065 (2007)Google Scholar
18. Stern, Eric, Klemic, J. F. Routenberg, D. A. Wyrembak, P. N. Turner-Evans, D. B., Hamilton, A. D. LaVan, D. A. Fahmy, T. M. and Reed, M. A. Nature 445, 519 (2007)Google Scholar
19. Zhirnov, V. V. “‘Minimizing’ the effects of Physical Limits”, SRC/NSF Forum on Nano-Morphic Systems: Processes, Devices, and Architectures, November 8-9, 2007, Stanford University, Stanford, CA. Google Scholar
20. Zhu, Q. Wu, L. Sheng, S. Mei, Z. C. Liu, W. F. Cai, W. L. and Yao, L. Z. J. Vac. Sci. Techol. B 25, 1630 (2007)Google Scholar