Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:50:55.163Z Has data issue: false hasContentIssue false

Monte Carlo Study of Dispersive Transport in Glassy Electrolytes

Published online by Cambridge University Press:  16 February 2011

D. Knödler
Affiliation:
Fakultät für Physik, Universität Konstanz, Universitgitsstr. 10, D-78434 Konstanz, Germany
P. Pendzig
Affiliation:
Fakultät für Physik, Universität Konstanz, Universitgitsstr. 10, D-78434 Konstanz, Germany
W. Dieterich
Affiliation:
Fakultät für Physik, Universität Konstanz, Universitgitsstr. 10, D-78434 Konstanz, Germany
Get access

Abstract

A lattice-gas model is presented, where ions are diffusing in an energy landscape due to immobile, randomly placed counterions. All Coulombic interactions are taken into account.By Monte Carlo simulations we obtain the ac-conductivity, which shows strong dispersion in the form of power-laws. In a separate study we investigate a restricted model, where long-range diffusion is suppressed. These calculations suggest that the response at high frequencies can be interpreted in terms of highly correlated, local motions of dipolar character. Conductivity exponents n1 near unity or even exceeding unity arefound in that regime. We discuss the relationship of these results to experiments on ionic transport in alkali-doped network glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jonscher, A.K., Nature 267, 673 (1977)Google Scholar
[2] Angell, C. A., in: High Conductivity Solid Ionic Conductors, Recent Trends and Applications, ed. Takahashi, T. (World Scientific, Singapore, 1989) p. 89; M. D. Ingram, Phys. Chem. Glasses 28, 215 (1987)Google Scholar
[3] Funke, K., Prog. Solid St. Chem. 22, 111 (1993)Google Scholar
[4] Lee, W.K., Lin, J. F. and Nowick, A. S., Phys. Rev. Letters 67, 1559 (1991)Google Scholar
[5] Elliot, S. R. and Owens, A. O., Phil. Mag. B 60, 777 (1989)Google Scholar
[6] Dyre, J. C., Phys. Rev. 48, 12511 (1993)Google Scholar
[7] Hunt, A., J. Phys. Cond. Mat. 4, 5371 (1992)Google Scholar
[8] Schirmacher, W., Solid State Ionics 28-30, 129 (1988)Google Scholar
[9] Maass, P., Petersen, J., Bunde, A., Dieterich, W. and Roman, H. E., Phys. Rev. Letters 66, 52 (1991)Google Scholar
[10] Knödler, D. and Dieterich, W., Physica A 191, 426 (1993)Google Scholar
[11] Puertolas, J. A. and Falo, F., J. Noncryst. Solids 172-174, 1202 (1994)Google Scholar
[12] Knödler, D., Pendzig, P. and Dieterich, W., Solid State Ionics 70-71, 356 (1994)Google Scholar
[13] Nowick, A. S., Lim, B. S. and Vaysleyb, R., J. Noncryst. Solids 172-174, 1243 (1994)Google Scholar
[14] Cramer, C., Funke, K., Vortkamp-Rückert, C. and Dianoux, A. J., Physica A 191, 358 (1992)Google Scholar
[15] Long, A. R., Adv. Phys. 31, 553 (1982)Google Scholar
[16] Elliott, S. R., Solid State Ionics 70-71, 27 (1994)Google Scholar