Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:42:40.023Z Has data issue: false hasContentIssue false

Monte Carlo Simulations of Phase Transitions in a Two-Dimensional Random-Bond Potts Model

Published online by Cambridge University Press:  10 February 2011

R. Paredes
Affiliation:
INTEVEP S.A, Apartado 76343. Caracas 1070-A Venezuela.
J. Valbuena
Affiliation:
INTEVEP S.A, Apartado 76343. Caracas 1070-A Venezuela.
Get access

Abstract

Motivated by recent experiments on phase behavior of systems confined in porous media, we have studied the effect of quenched bond randomness on the nature of the phase transition in the two dimensional Potts model. To model the effects of the porous matrix we chose the couplings of the q state Potts Hamiltonian from the distribution P(Jij) = (JijJ) + (1 – p)δ(Jij). For a range of p values, away from the percolation threshold, the transition temperature follows the mean field prediction Tc(p) = Tc(1)p. Furthermore, we observed that the strong first order transition, that appears in the pure case for q = 10, changes two a second order transition. It is also clear from our simulations that the second order transition of the q = 3 pure case changes to a second order transition of a different universality class. A finite size scaling analysis suggests that in both cases the critical exponents, in the presence of disorder, fall into the universality class of the two dimensional pure Ising model. This result agrees with theoretical calculations recently published [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kardar, M., Stella, A. Sartoni, G. and Derrida, B., Phys. Rev. E 52, R1269 (1995).Google Scholar
2. Harris, A. B., J. Phys. C 7, 1671 (1974).Google Scholar
3. Berker, A. N., J. Appl. Phys. 70, 5941 (1991).Google Scholar
4. Wu, X-I., Goldburg, W. I., Liu, M. X. and Xue, J. Z., Phys. Rev. Lett. 69, 470 (1992).Google Scholar
5. Bellini, T., Clark, N. A., Muzny, C. D., Wu, L., Garland, C. W., Schaefer, D. W. and Olivier, B. J., Phys. Rev. Lett. 69, 788 (1992).Google Scholar
6. Iannacchione, G. S. and Finotello, D., Phys. Rev. Lett. 69, 2094 (1992).Google Scholar
7. Clark, N. A., Bellini, T., Malzbender, R. M., Thomas, B. N., Rappaport, A. G., Muzny, C. D., Schaefer, D. W. and Hrubesh, L., Phys. Rev. Lett. 71, 3505 (1993).Google Scholar
8. Kim, S. B., Ma, J. and Chan, M. H. W., Phys. Rev. Lett. 71, 2268 (1993)Google Scholar
9. Falicov, A. and Berker, A. N., Phys. Rev. Lett. 76, 4380 (1996).Google Scholar
10. Falicov, A. and Berker, A. N., Phys. Rev. Lett. 74, 426 (1995).Google Scholar
11. Chen, S., Ferremberg, A. M. and Landau, D. P., Phys. Rev. Lett. 60, 1213 (1992).Google Scholar
12. Uzelac, K., Hasmy, A. and Jullien, R., Phys. Rev. Lett 74, 422 (1995).Google Scholar
13. Swendsen, R. H. and Wang, J.-S., Phys. Rev. Lett 58, 86 (1987).Google Scholar
14. Ferremberg, A. M. and Swendsen, R. H., Phys. Rev. Lett. 63, 1195 (1989).Google Scholar
15. Lee, J. and Kosterlitz, J. M., Phys. Rev. B 43, 3265 (1991).Google Scholar
16. Paredes, R. and Berker, A. N., (1996) unpublishedGoogle Scholar