Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:31:55.106Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Vapour Deposition of Nonstoichiometric Amorphous Silica

Published online by Cambridge University Press:  17 March 2011

V. M. Burlakov
Affiliation:
Department of Materials, University of Oxford, Parks Road, OX1 3PH, UK
Y. Tsukahara
Affiliation:
Technical Research Institute, Toppan Printing Co Ltd., 4-2-3, Takanodai-gun, Saitama 345-8508, Japan
G. A. D. Briggs
Affiliation:
Department of Materials, University of Oxford, Parks Road, OX1 3PH, UK
A. P. Sutton
Affiliation:
Department of Materials, University of Oxford, Parks Road, OX1 3PH, UK
Get access

Abstract

Monte Carlo simulation of deposition of nonstoichiometric amorphous SiOx nanolayers from vapor phase onto a polymer surface is reported. The model developed is based on the network properties of silica and takes into account dangling bonds arising during the real process of deposition. The model is validated via comparison of the radial- and bond angle distribution functions for the simulated Si and SiO2 structures with those obtained from experiment for bulk materials. Porosity of the simulated amorphous layer is characterized by the relative volume of pores and the ratio of the pore surfaces to the pore volume. We found that porosity strongly depends on nucleation sites density (NSD) on the polymer substrate. At NSD lower than 1 nm−2 the porosity may reach as much as 30% of the layer volume, while at NSD higher than 4 nm−2 it decreases down to 3-7%. Possible implications of the obtained results are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chatham, H., Surface and Coating Technology 78, 19 (1996).Google Scholar
2. Erlat, A. G., Spontak, R. J., Clarke, R. P., Robinson, T. C., Haaland, P. D., Tropsha, Y., Harvey, N. G., and Vogler, E. A., J. Phys. Chem. B 103, 60476055 (1999).Google Scholar
3. štich, I., Car, R., and Parrinello, M., Phys. Rev. B 44, 1109211104 (1991).Google Scholar
4. Susman, S., Volin, K. J., Price, D. L., Rino, J. P., Kalia, R. K., Vashishta, P., Gwanmesia, G., Wang, Y., and Liebermann, R. C., Phys. Rev. B 43, 11941197 (1991).Google Scholar
5. Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V., and Yip, S., Phys. Rev. B 58, 25392549 (1998).Google Scholar
6. Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 13921395 (1985).Google Scholar
7. Tu, Y., Tersoff, J., Grinstein, G., and Vanderbilt, D., Phys. Rev. Lett. 81, 48994902 (1998).Google Scholar
8. Tu, Y. and Tersoff, J., Phys. Rev. Lett. 84, 43934396 (2000).Google Scholar
9. Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 73, 23362339 (1994).Google Scholar
10. Beckers, J. V. L., Leeuw, S. W. de, J. Non-Cryst. Solids 261, 87100 (2000).Google Scholar
11. Mott, N. F., and Davis, E. A., “Electronic Processes in Non-Crystalline Materials”, 2nd ed., 1979, Clarendon, Oxford.Google Scholar
12. Keating, P. N., Phys. Rev. 145, 637 (1966).Google Scholar
13. Burlakov, V. M., Briggs, G. A. D., Sutton, A. P., Tsukahara, Y., Phys. Rev. Lett. 86, 30523055 (2001).Google Scholar
14. Wagman, D. D. and Medvedev, V. A., “CODATA Key Values for Thermodynamics”, 1989, New York, Hemisphere Publishing Corp.Google Scholar
15. Uchido, T., Kitagawa, Y., and Yoko, T., Phys. Rev. B 61, 234240 (2000).Google Scholar
16. Kugler, S., Molnar, G., Petö, G., Zsoldos, E., Rosta, L., Menelle, A., and Bellisent, R., Phys. Rev. B 40, 80308032 (1989).Google Scholar