Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:39:58.772Z Has data issue: false hasContentIssue false

A Monte Carlo Simulation of the Stillinger-Weber Model for Si-Ge Alloys

Published online by Cambridge University Press:  28 February 2011

Mohamed Laradji
Affiliation:
Center for Simulational Physics, The University of Georgia, Athens, GA 30602
D. P. Landau
Affiliation:
Center for Simulational Physics, The University of Georgia, Athens, GA 30602
B. Dünweg
Affiliation:
Institut für Physik, Johannes Gutenberg-Universität, Postfach 3980, D-55099 Mainz, Germany
Get access

Abstract

The bulk phase behavior of silicon-germanium alloys is investigated by means of a constant pressure Monte Carlo simulation of the Stillinger-Weber potential in the semi-grand-canonical ensemble. At low temperatures, Si and Ge phase separate into a Si-rich phase and a Ge-rich phase. The two-phase region is terminated by a critical point whose nature is investigated thoroughly by the multihistogram method combined with finite size scaling analysis. These results showed that the critical behavior of the alloy belongs to the mean field universality class, presumably due to the elastic degrees of freedom. We have also studied the structural properties of the mixture and found that the linear thermal expansions of both Si and Ge agree well with experiments. We also verified Végard's law above the critical point and calculated bond length distributions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jain, S.C., Willis, J.R., and Bullogh, R., Adv. Phys. 39, 127 (1990).Google Scholar
2 Kelires, P.C. and J. Tersoff, Phys. Rev. Lett. 63, 1164 (1989).Google Scholar
3 de Gironcoli, S., Giannozzi, P., and Baroni, S., Phys. Rev. Lett. 66, 2116 (1991).Google Scholar
4 Weakliem, P.C. and Carter, E.A., Phys. Rev. B 45, 13458 (1992).Google Scholar
5 Dünweg, B. and Landau, D.P., Phys. Rev. B 48, 14182 (1993).Google Scholar
6 Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
7 Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
8 Biswas, R. and Hamman, D.R., Phys. Rev. Lett. 55, 2001 (1985).Google Scholar
9 Cowley, E.R., Phys. Rev. Lett. 60, 2379 (1988).Google Scholar
10 Ding, K. and Andersen, H.C., Phys. Rev. B 34, 6987 (1986).Google Scholar
11 Fisher, M.E., Rep. Prog. Phys. 30, 615 (1967).Google Scholar
12 Finite Size Scaling and Numerical Simulation of Statistical Systems, edited by Privman, V. (Word Scientific, Singapore 1990).Google Scholar
13 Ferrenberg, A.M. and Swendsen, R.H., Phys. Rev. Lett. 63, 1195 (1989).Google Scholar
14 Brezin, E. and Zinn-Justin, J., Nucl. Phys. B 257, 867 (1985).Google Scholar
15 Ferrenberg, A.M. and Landau, D.P., Phys. Rev. B 44, 5081 (1991).Google Scholar
16 Laradji, M., Landau, D.P., and Dünweg, B., submitted to Phys. Rev. B (1994).Google Scholar
17 The thermal expansion of Si in the low-temperature regime is well understood: see Xu, C.H., Wang, C.Z., Chan, C.T., and Ho, K.M., Phys. Rev. B 43, 5024 (1991).Google Scholar
18 Semiconductors, Group IV Elements and III-V Compounds, Ed. Madelung, O. (Springer-Verlag, Berlin Heidelberg 1991).Google Scholar
19 Végard, L., Z. Phys. 5, 17 (1921).Google Scholar
20 Mousseau, N. and Thorpe, M.F., Phys. Rev. B 46, 15887 (1992).Google Scholar