Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:31:26.479Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of a Lattice Model of Microemulsions in Porous Media

Published online by Cambridge University Press:  15 February 2011

Parisa Nowroozi
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089-1211
Muhammad Sahimi
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089-1211
Get access

Abstract

Monte Carlo simulations are used to study various properties of a new lattice model of microemulsions. In particular, we calculate the critical exponent β of the order parameter (water concentration) and the correlation length exponent ν, and find them to be in excellent agreement with those of the 3D Ising model, and also in agreement with the experimental measurements. However, when the same exponents are calculated for the microemulsions in a porous medium, they do not agree with those of either the dilute or the random-field Ising model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gelbart, W. M., Ben-Shaul, A. and Roux, D. (eds.), Micelles, Membranes, Microemulsions, and Monolayers (Springer Verlag, Heidelberg, 1994).Google Scholar
2. Scriven, L. E., Nature 63, 123 (1976).Google Scholar
3. Reed, R. L. and Healy, N. R., in Improved Oil Recovery by Surfactant and Polymer Flooding, edited by Shah, D. O. and Schechter, R. S. (Academic Press, London, 1977).Google Scholar
4. Abdul, A. S. and Ang, C. C., Ground Water 32, 727 (1994).Google Scholar
5. Knackstedt, M. A. and Ninham, B. W., Phys. Rev. E 50, 2839 (1994).Google Scholar
6. Wheeler, J. C. and Widom, B., J. Am. Chem. Soc. 90, 3064 (1969).Google Scholar
7. Widom, B., J. Chem. Phys. 84, 6943 (1986).Google Scholar
8. For a review see, Chowdhury, D. and Stauffer, D., Physica A 186, 70 (1992).Google Scholar
9. Stauffer, D., Jan, N. and Pandey, R. B., Physica A 198, 401 (1993); D. Stauffer, N. Jan, Y. He, R. B. Pandey, D. G. Marangoni, and T. Smith-Palmer, J. Chem. Phys. 100, 6934 (1994); N. Jan and D. Stauffer, J. Physique 114, 345 (1994).Google Scholar
10. Larson, R. G., J. Chem. Phys. 96, 7904 (1992).Google Scholar
11. Aschauer, R. and Beysens, D., Phys. Rev. E 47, 1850 (1993); J. Chem. Phys. 98, 8194 (1993).Google Scholar
12. Heuer, H.-O., J. Phys. A 26, L333 (1993).Google Scholar
13. Rieger, H. and Young, A. P., J. Phys. A 26, 5279 (1993).Google Scholar
14. Sahimi, M., Rev. Mod. Phys. 65, 1393 (1993); Applications of Percolation Theory (Taylor and Francis, London, 1994); Flow and Transport in Porous Media and Fractured Rock (VCH, Weinheim, Germany, 1995).Google Scholar
15. Sahimi, M. and Nowroozi, P., Phys. Rev. Lett. 73, 1182 (1994).Google Scholar
16. Guillou, J. C. Le and Zinn-Justin, J., J. Physique Lett. 46, L137 (1985).Google Scholar
17. Honorat, P., Roux, D., and Bellocq, A.-M., J. Physique Lett. 45, L961 (1984).Google Scholar
18. Stauffer, D., Ho, J. S., and Sahimi, M., J. Chem. Phys. 94, 1385 (1991).Google Scholar
19. de Gennes, P. G., J. Phys. Chem. 88, 6469 (1984).Google Scholar
20. Dierker, S. B. and Wiltzius, P., Phys. Rev. Lett. 58, 1865 (1987); B. J. Frisken and D. S. Cannell, Phys. Rev. Lett. 69, 632 (1992); A. P. Y. Wong, S. B. Kim, W. I. Goldburg, and M. H. W. Chan, Phys. Rev. Lett. 70, 954 (1993).Google Scholar
21. Aliev, F., Goldburg, W. I., and Wu, X.-l., Phys. Rev. E 47, R3834 (1993).Google Scholar
22. Nowroozi, P. and Sahimi, M., J. Chem. Phys. (to be published).Google Scholar