Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:18:18.544Z Has data issue: false hasContentIssue false

Monte Carlo and Molecular Dynamics Validation of an N-Body Potential for Cu3Au

Published online by Cambridge University Press:  01 January 1992

Carlos Rey-losada
Affiliation:
Dep. de Física de la Materia Condensada, Facultad de Física, Universitad de Santiago, E - 15706 Santiago de Compostela, Espafia
Marc Hayoun
Affiliation:
Section d'Etude des Solides Irradiés, CEA-CEREM, CNRS URA N° 1380, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
Vassilis Pontikis
Affiliation:
Section d'Etude des Solides Irradiés, CEA-CEREM, CNRS URA N° 1380, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
Get access

Abstract

We present the results of Monte Carlo and Molecular Dynamics simulations of some thermodynamical properties of Cu3Au. The calculations rely on an empirical n-body potential that reproduces satisfactorily the critical temperature, Tc, the temperature dependence of the lattice constant and atomic vibrational amplitudes as well as Cowley's short-range order parameters above Tc. Our results show that relaxation effects decrease considerably the formation energy of antisite defects and therefore should explicitly be considered for a realistic description of the transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vitek, V. and Srolovitz, D. J., Eds., Atomistic simulation of materials: beyond pair-potentials, (Plenum, New York, 1989), p. 193.Google Scholar
2. Maeda, K., Vitek, V. and Sutton, A. P., Acta Met. 30, 2001 (1982).Google Scholar
3. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B33, 7983 (1982).Google Scholar
4. Ackland, G. J. and Vitek, V., in Atomistic simulation of materials: beyond pair-potentials, edited by Vitek, V. and Srolovitz, D. J. (Plenum, New York, 1989), p. 193.Google Scholar
5. Bardhan, P. and Cohen, J. B., Acta Cryst. A32, 597 (1976).Google Scholar
6. Bessière, M., Doctorat d'Etat, Univ. Pierre & Marie Curie / Paris VI, 1984.Google Scholar
7. Loisel, B., Gorse, D., Pontikis, V. and Lapujoulade, J., Surface Sci. 221, 365 (1989).Google Scholar
8. Rosato, V., Guillop<S, M. and Legrand, B., Phil. Mag. A59, 321 (1989).Google Scholar
9. Massobrio, C. and Pontikis, V., Phys. Rev. Lett. 62, 1142 (1989).Google Scholar
10. Evangelakis, G. A., Rizos, J. P., Lagaris, I. E. and Demetropoulos, I. N., Comp. Phys. Comm., 46, 401 (1987).Google Scholar
11. Simmons, R. O. and Wang, H., Single crystal elastic constants and calculated aggregate properties: a handbook, (MIT press, Cambridge MA, 1971).Google Scholar
12. Flinn, P. A., Mc Manus, G. M. and Rayne, J. A., J. Phys. Chem. Solids 15, 189 (1960).Google Scholar
13. Kittel, C., in Introduction à la physique de l’ état solide, (Dunod, Paris, 1975).Google Scholar
14. Wei, S. H., Mbaye, A.A., Ferreira, L. G., Zunger, A., Phys. Rev. B36, 4163 (1987).Google Scholar
15. Andersen, H. C., J. Chem. Phys. 72, 2384 (1980)Google Scholar
16. Nosé, S., J. Chem. Phys. 81, 511 (1984).Google Scholar
17. Bennett, C. H., in Diffusion in Solids, Recent Developments, edited by Nowick, A. S. and Burton, J. J. (Academic Press, New York, 1975) p. 73.Google Scholar
18. Pontikis, V., Ann. Chim. Fr., 11, 29 (1986).Google Scholar
19. Moss, S. C., J. Appl. Phys. 35, 3547 (1964).Google Scholar
20. Pearson, W. B., A handbook of lattice spacings and structures of metals and alloys, (Pergamon, Oxford, 1967).Google Scholar
21. Schwartz, L. H. and Cohen, J. B., J. App. Phys. 36, 598 (1965).Google Scholar