Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:44:15.843Z Has data issue: false hasContentIssue false

Monophasic Pre-Mullite Gels Prepared by a Nonhydrolytic Process

Published online by Cambridge University Press:  21 February 2011

Sylvie Acosta
Affiliation:
Université de Montpellier II, Laboratoire Mixte CNRS / Rhône-Poulenc, case 007, F34095 Montpellier Cedex 05, France
Robert J.P. Corriu
Affiliation:
Université de Montpellier II, Laboratoire Mixte CNRS / Rhône-Poulenc, case 007, F34095 Montpellier Cedex 05, France
Dominique Leclercq
Affiliation:
Université de Montpellier II, Laboratoire Mixte CNRS / Rhône-Poulenc, case 007, F34095 Montpellier Cedex 05, France
P. Hubert Mutin
Affiliation:
Université de Montpellier II, Laboratoire Mixte CNRS / Rhône-Poulenc, case 007, F34095 Montpellier Cedex 05, France
Andre Vioux
Affiliation:
Université de Montpellier II, Laboratoire Mixte CNRS / Rhône-Poulenc, case 007, F34095 Montpellier Cedex 05, France
Get access

Abstract

A nonhydrolytic sol-gel route to aluminosilicates is proposed which avoids the problems associated with different hydrolysis rates for the precursors. Two pre-mullite gels (Al2O3/SiO2=3/2) were prepared in two different ways. The conversion to mullite was studied as a probe for chemical homogeneity. The results indicate that a monophasic precursor (i.e. homogeneous at the atomic level) may be easily obtained by etherolysis of a mixture of SiCl4 and AlCl3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND NOTES

1 Yoldas, B.E., J. Mater. Sci. 12, 1203 (1977), 14, 1843, (1979).Google Scholar
2 Dislich, H., Angew. Chem. Int. Ed. Engl. 10, 363 (1971).Google Scholar
3 Pouxviel, J.C., Boileau, J.P., Sanger, S., Hubert-Pfalzgraf, L., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D. E., Ulrich, D.R. (North-Holland, New york, 1984), p. 151.Google Scholar
4 Corriu, R.J.P., Leclercq, D., Lefèvre, P., Mutin, P.H. and Vioux, A., J. Non-Cryst. Solids 146, 301 (1992); J. Mater. Chem. 2, 673 (1992); Chem. Mater. 4,961 (1992).Google Scholar
5 Dijkgraaf, C. and Rousseau, J.P.G., Spectrochim. Acta, 21, 769 (1965).Google Scholar
6 Moedritzer, K. in Organometallic Reaction, edited by Becker, E. I., Tsutsui, M., (Wiley, New York, 1971), vol. 2, pp 1-115.Google Scholar
7 Bradley, B.C., Hill, D.A., J. Chem. Soc., 1963. 2101.Google Scholar
8 Weingarten, H., Van Wazer, J. R., J. Am. Chem. Soc. 87, 724 (1965).Google Scholar
9 Sacks, M.D. and Lee, H.W., in Mullite and Mullite Matrix Composites (Ceramic Transactions 6), edited by Somiya, S., Davis, R.F. and Pask, J.A. Eds, (The Amer. Ceram. Soc., Westerville, OH, 1990); pp 167-207.Google Scholar
10 Aksay, I.A., Dabbs, D.M. and Sarikaya, M., J. Am. Ceram. Soc. 74, 2343 (1991).Google Scholar
11 Yoldas, B.E. and Partlow, D. P., J. Mater. Sci. 23, 1895 (1988).Google Scholar
12 Yoldas, B.E., J. Mater. Sci. 27, 6667 (1992).Google Scholar
13 Chakravorty, A.K., J. Mater. Sci. 28 3839.(1993); J. Am. Ceram. Soc. 62, 120 (1979).Google Scholar
14 Chakravorty, A.K. and Ghosh, D.K., J. Am. Ceram. Soc. 71, 978 (1988).Google Scholar
15 Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69, 652 (1986).Google Scholar
16 Low, L.M. and McPherson, R., J. Mater. Sci. 24 926 (1989).Google Scholar
17 Li, D.X. and Thomson, W.J., J. Am. Ceram. Soc. 73, 964 (1990); J Mater. Res. 5, 1963 (1990).Google Scholar
18 Huling, J.C. and Messing, G.L., J. Non-Cryst. Solids 147-148, 213 (1992).Google Scholar
19 Recorded with Cu-κα radiation using a diffractometer Siefert MZIV.Google Scholar
20 Ossaka, J., Nature 191, 1000 (1961).Google Scholar
21 Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H. and Vioux, A., this issue.Google Scholar
22 Recorded on a spectrometer Brucker FT-AM300 (59.62 MHz), using 4 kHz spinning rate, 30° r.f. pulse and 60 s relaxation delay (referenced to TMS as an external standard).Google Scholar
23 Engelhardt, G. and Michel, D., High Resolution Solid-State NMR of Silicates and Zeolites (Wiley, Chichester, 1987); pp. 134-145.Google Scholar
24 Recorded on a spectrometer Brucker FT-AM300 (78.17 MHz), using 4 kHz spinning rate, π/12 r.f. pulse and 2s relaxation delay (referenced to aqueous A1(H2O)63+ as an external standard).Google Scholar
25 Taylor, A. and Holland, D., J. Non-Cryst. Solids 152, 1 (1993).Google Scholar