Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T13:13:27.506Z Has data issue: false hasContentIssue false

Monolithic Integration of Si and GaAs Devices

Published online by Cambridge University Press:  25 February 2011

H. K. Choi
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
G. W. Turner
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
B-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
T. H. Windhorn
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173-0073
Get access

Abstract

Integration of Si MOSFETs with GaAs MESFETs and with GaAs/AlGaAs double-heterostructure LEDs on monolithic GaAs/Si substrates is reported. Both Si MOSFETs and GaAs MESFETs show characteristics comparable to those for devices fabricated on separate Si and GaAs substrates. In LED/MOSFET integration, the cathode of each LED is connected with the drain of a MOSFET. This is the first time that Si and GaAs devices have been monolithically interconnected. LED modulation rates up to 27 Mbps have been achieved by applying a stream of voltage pulses to the MOSFET gate.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, H. K., Tsaur, B-Y., Metze, G. M., Turner, G. W., and Fan, J. C. C., IEEE Electron Dev. Lett. EDL–5, 207 (1984).CrossRefGoogle Scholar
2. Metze, G. M., Choi, H. K., and Tsaur, B-Y., Appl. Phys. Lett. 45, 1107 (1984).CrossRefGoogle Scholar
3. Fischer, R., Henderson, T., Klem, J., Masselink, W. T., Kopp, W., and Morkoç, H., Electron Lett. 20, 945 (1984).CrossRefGoogle Scholar
4. Morkoç, H., Peng, C. K., Henderson, T., Kopp, W., and Fischer, R., IEEE Electron Dev. Lett. EDL–6, 381 (1985).CrossRefGoogle Scholar
5. Ishida, T., Nonaka, T., Yamaguchi, C., Sano, Y., Akiyama, M., and Kaminishi, K., Abstracts, 42nd Ann. Device Res. Conf., paper VIB-7, Santa Barbara (1984).Google Scholar
6. Nonaka, T., Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. Lett. 23, L919 (1984).CrossRefGoogle Scholar
7. Fischer, R., Chand, N., Kopp, W., Morkoç, H., Erickson, L. P., and Youngman, R., Appl. Phys. Lett. 47, 397 (1985).CrossRefGoogle Scholar
8. Fischer, R., Klem, J., Peng, C. K., Gedymin, J. S., and Morkoç, H., IEEE Electron Dev. Lett. EDL–7, 112 (1986).CrossRefGoogle Scholar
9. Gale, R. P., Fan, J. C. C., Tsaur, B-Y., Turner, G. W., and Davis, F. M., IEEE Electron Dev. Lett. EDL–2, 169 (1981).CrossRefGoogle Scholar
10. Shinoda, Y., Nishioda, T., and Ohmachi, Y., Jpn. J. Appl. Phys. 22, L450 (1983).Google Scholar
11. Fletcher, R. M., Wagner, D. K., and Ballantyne, J. M., Appl. Phys. Lett. 44, 967 (1984).CrossRefGoogle Scholar
12. Windhorn, T. H., Metze, G. M., Tsaur, B-Y., and Fan, J. C. C., Appl. Phys. Lett. 45, 309 (1984).CrossRefGoogle Scholar
13. Windhorn, T. H. and Metze, G. M., Appl. Phys. Lett. 47, 1031 (1985).CrossRefGoogle Scholar
14. Sakai, S., Soga, T., Takeyasu, M., and Umeno, M., Jpn. J. Appl. Phys. Lett. 24, L666 (1985).CrossRefGoogle Scholar
15. Turner, G. W., Metze, G. M., Diadiuk, V., Tsaur, B-Y., and Le, H. Q., International Electron Devices Meeting, paper 17.4, 468, Washington, DC (1985).Google Scholar
16. Fischer, R., Henderson, T., Klem, J., Kopp, W., Peng, C. K., and Morkoç, H., Appl. Phys. Lett. 47, 983 (1985).CrossRefGoogle Scholar
17. Ghosh, R. N., Griffing, B., and Ballantyne, J. M., Appl. Phys. Lett. 48, 370 (1986).CrossRefGoogle Scholar