Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:16:51.695Z Has data issue: false hasContentIssue false

Monoenergetic Positron Beam Studies of Oxygen in Single Crystal Silicon - Stress Induced Clustering of Oxygen Atoms in Silicon

Published online by Cambridge University Press:  03 September 2012

R. Nagai
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185, Japan
E. Takeda
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1–280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185, Japan
Y. Tabuki
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1, Tennoudai, Tsukuba-shi, Ibaraki 305, Japan
L. Wei
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1, Tennoudai, Tsukuba-shi, Ibaraki 305, Japan
S. Tanigawa
Affiliation:
Institute of Materials Science, University of Tsukuba, 1–1–1, Tennoudai, Tsukuba-shi, Ibaraki 305, Japan
Get access

Abstract

A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski (CZ)-grown Si with either thermally grown S1O2 (100 nm thick) or silicon oxide (p-SiOx) deposited by plasma enhanced chemical vaper deposition technique on the surface. Both the growth of thermal SiO2 and the deposition of SiOx film resulted in a reduction of the doppler-broadening line shape parameter (S-parameter) for the positron annihilation in the bulk silicon region. Annealing at 450δC, the removal of oxide overlayer or long-term aging at room temperature caused the S-parameter to return to its intrinsic value. It was thought that tensile stress in silicon, induced by the thermal oxidation or the deposition of SiOx films which had compressive internal stress themselves, enhanced the rearrangement of oxygen atoms and caused the formation of oxygen clusters in silicon crystal. Oxygen interstitial clusters can trap positrons leading to the lower S-parameter value for annihilation in the bulk silicon region, because of large overlap with core electrons. The above results suggest that oxygen atoms can absorb lattice strain by clustering and thus prevent the generation of dislocations against external stress in the Si lattice. This results yield an additional explanation of the high mechanical strength of CZ Si crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spenke, E. and Heywang, W., Phys. Stat. Sol. (a), 64, 11 (1981).CrossRefGoogle Scholar
2. Elwell, D., Prog. Cryst. Growth Charact., 4, 297 (1981).CrossRefGoogle Scholar
3. Hu, S. M. and Patrick, W. J., J. Appl. Phys.,46, 1869. (1975)CrossRefGoogle Scholar
4. Hu, S. M., Appl. Phys. Lett., 31, 53 (1977).CrossRefGoogle Scholar
5. Kaiser, W., Frisch, H. L. and Reiss, H., Phys. Rev., 112, 1546 (1958).Google Scholar
6. Tice, W. K. and Tan, T. Y., Appl. Phys. Lett., 28, 564 (1976).CrossRefGoogle Scholar
7. Tsuya, H., Ogawa, K. and Shimura, F., Jpn. J. Appl. Phys., 20, L31 (1981).CrossRefGoogle Scholar
8. Peibst, H. and Raidt, H., Phys. Stat. Sol. (a), 68, 253 (1981).Google Scholar
9. Dannefare, S. and Kerr, D., J. Appl. Phys., 60, 1313 (1986)CrossRefGoogle Scholar
10. Dannefaer, S., Phys. Stat. Sol. (a), 102, 481 (1987).CrossRefGoogle Scholar
11. Tanigawa, S., Watanabe, K., Kurihara, T. and Kubota, T., in Defect Control in Semiconductors, edited by Sumino, K. (Elsevier Science Publishers B. V., North-Holland, 1990) p. 1593.Google Scholar
12. Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys., 60, 701 (1988).Google Scholar
13. West, R. N., in Positron in Solids, edited by Hautojarvi, P. (Springer, Berlin, 1979) p. 91.Google Scholar
14. Tanigawa, S., Iwase, Y., Uedono, A. and Sakairi, H., J. Nucl. Mater, 133&134, 463 (1985).CrossRefGoogle Scholar
15. Mills, A. P. Jr, and Wilson, R. J., Phys. Rev., A26, 90 (1982).Google Scholar
16. Nielsen, B., Lynn, K. G., Chan, Y. C and Welch, D. O., Appl. Phys. Lett.,, 51, 1022 (1987).Google Scholar
17. Nielsen, B., Lynn, K. G., Leung, T. C., Welch, D. O. and Rubloff, G. W., Proc. Mater. Res. Soc., 105, 241 (1988).Google Scholar
18. Uedono, A., Tanigawa, S. and Ohji, Y., Phys. Lett., A133, 82 (1988).CrossRefGoogle Scholar
19. Uedono, A., Tanigawa, S., Suzuki, K. and Watanabe, W., J. Appl. Phys. Lett., 53, 473 (1988).CrossRefGoogle Scholar
20. Wei, L., Tabuki, Y., Kondo, H., Tanigawa, S., Nagai, R. and Takeda, E., J. Appl. Phys., 70, Dec. 15 issue (in press).Google Scholar
21. Lynn, K. G., Chen, D. M., Nielsen, B., Pareja, R. and Myers, S., Phys. Rev,. B34, 1449 (1986).CrossRefGoogle Scholar
22. Triftshauser, W. and Kogel, G., Phys. Rev. Lett., 48, 1741 (1982).CrossRefGoogle Scholar
23. Saito, M. and Oshiyama, A., Phys. Rev., B38, 10711 (1988).CrossRefGoogle Scholar
24. Dannefaer, S., Mascher, P. and Kerr, D., Phys. Rev. Lett., 56, 2159 (1986).Google Scholar
25. Kaiser, W., Phys. Rev., 105, 1751 (1957).Google Scholar
26. Snoek, J. L., Physica, 6, 591 (1938).Google Scholar
27. Bond, W. L., Kaiser, W., J. Phys. Chem. Solids, 16, 44 (1960).Google Scholar
28. Rosencher, E., Staboni, A., Rigo, S. and Amsel, G., Appl. Phys. Lett., 34, 254 (1979).Google Scholar
29. Cristy, S. S. and Condon, J. B., J. Electrochem. Soc., 128, 2170 (1981).CrossRefGoogle Scholar
30. Gosele, U., Tan, T. Y., Appl. Phys., A28, 79 (1982).Google Scholar
31. Logan, R. A. and Peters, A. J., J. Appl. Phys., 30, 1627 (1959).Google Scholar
32. Gaworzewski, P. and Ritter, G., Phys. Stat. Sol. (a), 67, 511 (1981).CrossRefGoogle Scholar
33. Iren, E. A., Tiemey, E. and Angiello, J., J. Electrochem. Soc., 129, 2594 (1982).CrossRefGoogle Scholar
34. Girfalco, L. A. and Welch, D. C, Point Defects and Diffision in Stained Metales (Gordon & Breach, New York 1967).Google Scholar
35. Mack, L. M., Reisman, A. and Bhattacharya, P. K., J. Electrochem. Soc., 136, 3433 (1989).CrossRefGoogle Scholar