Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:08:19.024Z Has data issue: false hasContentIssue false

Monitoring Of Direct Reactions During Etching Of Silicon

Published online by Cambridge University Press:  15 February 2011

K. P. Giapis
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125, [email protected]
T. K. Minton
Affiliation:
Division of Chemistry and Biochemistry, Montana State University, Bozeman, MO 59717
Get access

Abstract

We present evidence of a direct reaction occurring when a hyperthermal fluorine atom beam (4.8 eV) impinges on a fluorinated silicon surface under steady-state etching conditions. When monitoring in-situ and in real time reactive scattering products by means of a quadrupole mass spectrometer, SiF3+ and SiF2+ are detected with bimodal time of flight distributions. The slow component can be described by a Maxwell-Boltzmann distribution at the surface temperature. However, the fast component is leaving the surface with velocities substantially higher than thermal and with a flux which does not obey the cosine law. Its translational energy increases with the angle of incidence of the hyperthermal fluorine beam. Etching in the direct reaction mode should result in highly anisotropic profiles by overcoming product desorption limitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Winters, H. F. and Coburn, J. W., Surf. Sci. Rep. 14, 161 (1992).Google Scholar
2 Cook, J. M. and Donohoe, K. G., Sol. State Technol., p. 119, April 1991.Google Scholar
3 Shimokawa, F., Tanaka, H., Uenishi, Y., and Sawada, R., J. Appl. Phys. 66, 2613 (1989).Google Scholar
4 Ono, T., Kashima, H., Hiraoka, S., and Suzuki, K., J. Vac. Sci. Technol. B 9, 2798 (1991).Google Scholar
5 Szabo, A., Farrall, P. D. and Engel, T., J. Appl. Phys. 75, 3623 (1994).Google Scholar
6 Giapis, K. P., Moore, T. A. and Minton, T. K., J. Vac. Sci. Technol. A 13, 959 (1995).Google Scholar
7 Timms, P.L., Kent, R. A., Ehlert, T. C. and Margrave, J. L., J. Am. Chem. Soc. 87, 2824 (1965).Google Scholar
8 Hayes, T. R., Shul, R. J., Baiocchi, F. A., Wetzel, R. C. and Freund, R. S., J. Chem. Phys. 89, 4035 (1988).Google Scholar
9 Haring, R. A., Haring, A., Saris, F. W., and Vries, A. E. de, Appl. Phys. Lett. 41, 174 (1982).Google Scholar
10 Houle, F., J. Appl. Phys. 60, 3018 (1986); also J. Chem. Phys. 87, 1866 (1987).Google Scholar
11 Lo, C. W., Shuh, D. K., Chakarian, V., Durbin, T. D., Varekamp, P. R., and Yarmoff, J. A., Phys. Rev. B 47, 15648 (1993).Google Scholar
12 Carter, G. and Coligon, J. S., ”Ion Bombardment of Solids,” Heineman Educational Books LtD, London, 1968, p. 214.Google Scholar
13 Beckerle, J.D., Johnson, A. D., and Ceyer, S. T., J. Chem. Phys. 93, 4047 (1990); S. T. Ceyer, Science 249, 133 (1990).Google Scholar
14 Barone, M. E. and Graves, D. B., J. Appl. Phys. 77, 1263 (1995).Google Scholar