No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Low-k materials in advanced interconnect modules are required not only to lower the parasitic capacitances, but also to have mechanical stability with damage-less interfaces. By plasma-polymerization (PP) process using ring-type siloxane precursor, a new self-organized porous SiOCH film is developed with preserving the original hexagonal silica-backbone structure, thus so called as a molecular-pore-stack (MPS) SiOCH film. The hydrocarbon-rich MPS film has high endurance to the process damages. A density-modulated MPS film is obtained with reinforced interfaces by plasma co-polymerization (PcP) process using not only the ring-type but also linear-type siloxane. Furthermore, an ultimate full low-k module with low-k silica-amorphous-carbon composite (SACC) cap, instead of high-k SiCN, is also obtained simply by the one-step deposition scheme. The modulated PcP process and the sophisticated molecular design of the precursor siloxane provides scaled-down interconnect modules with good mechanical strength and excellent dielectric reliability at a low manufacturing cost, applicable for 45/32/22nm-nodes ULSIs.