Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:49:32.834Z Has data issue: false hasContentIssue false

Molecular Statics of a Ni/Zr Heterophase Interface

Published online by Cambridge University Press:  21 February 2011

M. G. Fernandes
Affiliation:
Laboratoire des Solides Irradids, CEA-CEREM, URA CNRS # 1380, Ecole Polytechnique 91128 Palaiseau Cedex, France Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
V. Pontikis
Affiliation:
Laboratoire des Solides Irradids, CEA-CEREM, URA CNRS # 1380, Ecole Polytechnique 91128 Palaiseau Cedex, France
P.D. Bristowe
Affiliation:
Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Get access

Abstract

An atomistic model for a Ni/Zr hetero-interface formed between closed packed atomic planes is constructed and simulated using energy minimization techniques. The results show how misfit dislocations are introduced in the system and form an hexagonal array, and that the strain field in Ni can reach values two times larger than those in Zr. Calculated values for antisite defect energies are positive and are a strong function of position at the interface, reflecting the role of the dislocation network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clemens, B. M., Phys. Rev. B 33, 7615 (1986)CrossRefGoogle Scholar
2. Meng, W. J., Nieh, C.W., and Johnson, W. L., Appl. Phys. Lett. 51, 1693 (1987)CrossRefGoogle Scholar
3. Vredenberg, A. M., Westendorp, J. F. M., Saris, F. W., Pers, N. M. van der, and Keijser, Th.H de, J. Mater. Res. 1, 774 (1986)CrossRefGoogle Scholar
4. Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. Lett. 62, 1142 (1989)CrossRefGoogle Scholar
5. Massobrio, C. and Pontikis, V., Phys. Rev. B 45, 2484 (1992)CrossRefGoogle Scholar
6. Weissmann, M., Ramfrez, R., and Kiwi, M., Phys. Rev. B 46, 2577 (1992)CrossRefGoogle Scholar
7. Hsieh, H. and Yip, S., Phys. Rev. B 39, 7476 (1989)CrossRefGoogle Scholar
8. Sabochick, M. J. and Lam, N. Q., Phys. Rev. B 43, 5243 (1991)CrossRefGoogle Scholar
9. Hakkens, F., Veirman, A. De, Coene, W., and Broeder, F. J. A. den, J. Mater. Res. 8, 1019 (1993)CrossRefGoogle Scholar
10 Cleri, F. and Rosato, V., Phys. Rev. B 48, 22 (1993)CrossRefGoogle Scholar
11. Willaime, F. and Massobrio, C., Phys. Rev. B 43, 11653 (1991)CrossRefGoogle Scholar
12. Bennet, C.H., in Diffusion in Solids: Recent Developments, edited by Nowick, A.S. and Burton, J.J. (Academic Press, New York, 1975) p. 75 Google Scholar
13. Highmore, R. J., Phil. Mag. B 62, 455 (1990)CrossRefGoogle Scholar