Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:32:04.307Z Has data issue: false hasContentIssue false

Molecular Precursors to Functional Materials

Published online by Cambridge University Press:  15 February 2011

Norman Herron
Affiliation:
The DuPont Company, Central Research and Development, P.O. Box 80328, Wilmington, DE 19880-0328
David L. Thorn
Affiliation:
The DuPont Company, Central Research and Development, P.O. Box 80328, Wilmington, DE 19880-0328
Richard L. Harlow
Affiliation:
The DuPont Company, Central Research and Development, P.O. Box 80328, Wilmington, DE 19880-0328
Get access

Abstract

The design of molecular precursors to materials for catalysis will be described. Aluminum fluoride is an important catalytic material for fluorocarbon transformations which are key to the production of CFC alternatives. Catalytic activity is closely related to the crystalline phase of the bulk AIF3 and we show how this phase chemistry can be precisely controlled using molecular precursors to produce pure known phases and also to extend to previously unknown phases. A similar approach to vanadyl phosphate oxidation catalysts will be described where cluster chemistry can be invoked to generate isolated fragments of a catalyst's structure and then used either to explore mechanism or be used as precursors to functional catalyst materials. The underlying themes of controlled molecular precursor synthesis, resultant processability and eventual easy conversion to useful materials are emphasized throughout.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cochet-Muchy, B., Portier, J., in Inorganic Solid Fluorides, Chemistry and Physics, edited by Hagenmuller, P. (Academic Press, Orlando, FL 1985), p.580.Google Scholar
2. Christoph, F.J. and Teufer, G., U.S. Patent No. 3,178,484 (1965) and G.B. Patent No. 1,026,105 (1966).Google Scholar
3. Corbin, D.R. and Rao, V.N.M., W/O 92/16479 (Oct 1 1992).Google Scholar
4. Hoppe, R. and Kissel, D., J.Fluorine Chem. 24, 327 (1984).Google Scholar
5. LeBail, A., Jacoboni, C., Leblanc, M., DePape, R., Duroy, H., Fourquet, J.L., J. Solid State Chem. 77, 96 (1988).Google Scholar
6. Christoph, F.J. and Teufer, G., U.S. Patent No. 3,178,483 (1965). D.B. Shinn, D.S. Crocket, H.M. Haendler, Inorg. Chem. 5, 1927, (1966).Google Scholar
7. Brosset, C., Z. Anorg. Allg. Chem. 239, 301 (1938). R. Losch and C. Hebecker, Z. Naturforsch. 34B, 131 (1979).Google Scholar
8. Herron, N., Thorn, D.L., Harlow, R.L., Davidson, F., J. Am. Chem. Soc. 115, 3028, (1993).Google Scholar
9. Herron, N., Thorn, D.L., Harlow, R.L., Inorg. Chem. 32, 2985 (1993).Google Scholar
10. Cowley, J.M. and Scott, T.R., J. Am. Chem. Soc. 70, 105 (1948).Google Scholar
11. DePape, R. and Ferey, G., Materials Research Bulletin 21, 971 (1986).Google Scholar
12. After completion of this work a similar pattern and refinement of the θ-A1F3 material was reported by Bentrup, U., Eur. J. Solid State Inorg Chem. t.29, 51 (1992). and in A.LeBail, J.L. Fourquet, U. Bentrup, J. Solid State Chem. 100, 151 (1992).Google Scholar
13. Fourquet, J.L., Plet, F., DePape, R., Acta Cryst. B36, 1997 (1980).Google Scholar
14. Agaskar, P.A., Decaul, L., Grasselli, R.K., Catal. Letts. 23, 339 (1994).Google Scholar
15. Centi, G., Trifiro, F., Ebner, J.R., Franchetti, V.M., Chem. Rev. 88, 55, (1988).Google Scholar
16. Chen, Q., Zubieta, J., Angew. Chem. Int. Ed. Engl. 32, 261 (1993).Google Scholar
17. Tofield, B.C., Crane, G.R., Pasteur, G.A., Sherwood, R.C., J. Chem. Soc. Dalton 1807 (1975).Google Scholar
18. Hasegawa, A., J. Chem. Phys. 55, 3101, (1971).Google Scholar