Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:45:33.306Z Has data issue: false hasContentIssue false

Molecular Motion through a Fluctuating Bottleneck

Published online by Cambridge University Press:  15 February 2011

N. Eizenberg
Affiliation:
School of Chemistry, Tel Aviv University, Israel.
J. Klafter
Affiliation:
School of Chemistry, Tel Aviv University, Israel.
Get access

Abstract

Molecular motion in a series of cavities dominated by time dependent bottlenecks is studied as a model for molecular pathways in biomolecules. The problem is formulated by coupled rate and Langevin equations and is shown to be equivalent to n-dimensional reaction-diffusion equation where n is the number of cavities visited by the molecules. Results are presented for two cavities and a comparison is made between steady state and non steady state results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zwanzig, R., J. Chem. Phys. 97 3587 (1992)Google Scholar
2. Wang, J. and Wolynes, P., Chem. Phys. Lett. 212 427 (1993); Chem. Phys. 180 141 (1994)Google Scholar
3. Tilton, R. F. Jr, Singh, U. C., Weiner, S. J., Connolly, M. L., Kuntz, I. D. Jr, Kollman, P. A., Max, N. and Case, D. A.,J. Mol. Biol. 192 443 (1986); R. F Tilton Jr, U. C. Singh, I. D. Kuntz Jr and P. A. Kollman, J. Mol. Biol. 199 195 (1988)Google Scholar
4. Elber, R. and Karplus, M.,J. Am. Chem. Soc. 112 9161 (1990)Google Scholar
5. Weiss, G. H.,J. Chem. Phys 80 2880 (1984)Google Scholar
6. Ansari, A., Jones, C.M., Henry, E. R., Hofrichter, J. and Eaton, W. A., Science 256 1796 (1992)Google Scholar
7. Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M. C., Reinisch, L., Reynolds, A. H., Sorensen, L. B. and Yue, K. T., Biochemistry 19 5147 (1980)Google Scholar
8. Agmon, N. and Hopfield, J. J.,J. Chem. Phys. 78 6947 (1983); J. Chem. Phys. 79 2042 (1983)Google Scholar
9. Bagchi, B. and Fleming, G. R.,J. Phys. Chem. 94 9 (1990); C. S. Poomimadevi and B. Bagchi, Chem. Phys. Lett. 168 276 (1990)Google Scholar
10. Press, W. H., Numerical Recipes, (Cambridge university press 1986)Google Scholar