Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:51:42.781Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Shocks and Detonations in a Model 3D Energetic Crystal with Defects

Published online by Cambridge University Press:  15 February 2011

Lee Phillips*
Affiliation:
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We examine shock induced detonation in a three-dimensional model of a nitromethane crystal. The crystal may contain a defect in the form of a small void. Three regimes are identified: the shock can be weak enough that no chemical bonds are broken; the shock can be so strong that a detonation front is established in the perfect crystal; or the shock can be of intermediate strength, where chemical activity requires the existence of the defect. In all regimes, the defect increases the reaction rate and causes a hot spot to appear.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fickett, W. and Davis, W. C., Detonation, U. of Cal. Press, Berkeley, 1979.Google Scholar
2. Walker, F. E., The initiation and detonation of explosives: an alternative concept, LLNL Report UCRL-53860, Lawrence Livermore National Laboratory, 1988.Google Scholar
3. Tsai, D. H. and Trevino, S. F., J. Chem. Physics 81, 5636 (1984).CrossRefGoogle Scholar
4. Phillips, L. and Oran, E. S., Molecular dynamics simulations of shocks in imperfect crystal lattices, in Shock Compression of Condensed Matter 1991, pages 143–146, APS, 1992.CrossRefGoogle Scholar
5. Phillips, L., Sinkovits, R. S., Oran, E. S., and Boris, J. P., Molecular dynamics of shocks in crystals with defects, NRL Memorandum Report 4440–92–6998.Google Scholar
6. Phillips, L., Sinkovits, R. S., Oran, E. S., and Boris, J. P., The interaction of shocks and defects in lennard-jones crystals, 1992, To appear in Journal of Physics: Condensed Matter.CrossRefGoogle Scholar
7. Lambrakos, S. G., Peyrard, M., Oran, E. S., and Boris, J. P., Phys. Rev. B 39, 993 (1989).CrossRefGoogle Scholar
8. Peyrard, M., Odiot, S., Oran, E., Boris, J., and Schnur, J., Phys. Rev. B 33, 2350 (1986).CrossRefGoogle Scholar
9. Odiot, S., Journal de Physique Colloque C4, 225 (1987).Google Scholar
10. Elert, M. L., Deaven, D. M., Brenner, D. W., and White, C. T., Phys. Rev. B 39, 1453 (1989).CrossRefGoogle Scholar
11. Maifre, P., Modelisation de Propagation d'Onde de Detonation dans un Cristal Moleculaire Energetique, PhD thesis, Universite de Bourgogne, 1992.Google Scholar
12. Maffre, P. and Peyrard, M., Phys. Rev. B (1992), In press.Google Scholar
13. Phillips, L. and Sinkovits, R. S., Molecular dynamics of detonation in crystals with defects, Presented at the Energetic Materials Workshop, Los Alamos, March 36, 1992.Google Scholar
14. Lambrakos, S. G. and Boris, J. P., Journal of Computational Physics 73, 183 (1987).CrossRefGoogle Scholar
15. Karo, A. M., Hardy, J. R., and Walker, F. E., Acta Astronautica 5, 1041 (1978).CrossRefGoogle Scholar
16. Hardy, J. R., Karo, A., and Walker, F. E., Molecular dynamics of shock and detonation phenomena in condensed matter, in Proc. of the 7th ICOGER, page 209, 1979.Google Scholar
17. Campbell, A. W. and Travis, J. R., The shock desensitization of PBX-9404 and composition B-3, in Proceedings of the Eighth Symposium (International) on Detonation, pages 1057–1068, 1986.Google Scholar
18. Lambrakos, S. G., Peyrard, M., and Oran, E. S., Molecular dynamics simulation of the effect of molecular dissociation and energy absorption on detonation structure in energetic solids, in Proceedings of the Ninth Symposium (International) on Detonation, pages 713–723, 1990.Google Scholar