Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:37:44.075Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Contact Line Motion

Published online by Cambridge University Press:  21 February 2011

Mark O. Robbins
Affiliation:
The Johns Hopkins University, Dept. of Physics and Astronomy, Baltimore, MD 21218 Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106
Peter A. Thompson
Affiliation:
The Johns Hopkins University, Dept. of Physics and Astronomy, Baltimore, MD 21218
Get access

Abstract

We report on molecular dynamics simulations of incompressible Lennard-Jones fluids sheared between two solid walls. Boundary conditions and flow fields were studied for both single fluid and immiscible two-fluid systems. For single fluid systems, equal wall and fluid densities or strong wall-fluid couplings crystallized the first layers of fluid atoms. Different wall densities and weaker coupling led to normal Couette flow with a no-slip boundary condition. Our simulations of two fluid systems indicate that there is always slip within ∼ 2 atomic spacings from the contact line. This slip appears to be associated with the breakdown of hydrodynamics at atomic scales. Changes with capillary number in the interface shape and dynamic contact angle were consistent with previous analytic results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dussan, E.B. V., Ann. Rev. Fluid Mech. 11, 371 (1979);Google Scholar
2. Huh, C. and Scriven, L.E., J. Colloid Interface Sci. 25, 85 (1971).Google Scholar
3. Huh, C. and Mason, S.G., J. Colloid Interface Sci. 60, 11 (1977).Google Scholar
4. Hocking, L.M., J. Fluid Mech. 79, 209 (1977).Google Scholar
5. Cox, R.G., J. Fluid Mech. 186, 169 (1986).Google Scholar
6. Kafka, F.Y. and Dussan, E.B. V., J. Fluid Mech. 95, 539 (1979).Google Scholar
7. Bitsanis, I., Magda, J.J., Tirrell, M., and Davis, H.T., J. Chem. Phys. 87, 1733 (1987).Google Scholar
8. Koplik, J., Banavar, J.R., and Willemsen, J.F., Phys. Rev. Lett. 60, 1282 (1988); Phys. Fluids A 1, 781 (1989).Google Scholar
9 Heinbuch, U. and Fischer, J., Phys. Rev. A 40, 1144 (1989).Google Scholar
10. Mareschal, M., Mansour, M. M., Puhl, A., and Kestement, E., Phys. Rev. Lett. 61, 2550 (1988).Google Scholar
11 Thompson, P. A. and Robbins, M. O., Phys. Rev. Lett. 63, 766 (1989).Google Scholar
12. Ngan, C.G. and Dussan, E.B. V., J. Fluid Mech. 118, 27 (1982).Google Scholar
13. Fermigier, M. and Jenffer, P., to be published (1989).Google Scholar
14. Hoffman, R., J. Colloid Interface Sci. 50, 228 (1975).Google Scholar
15. See, for example, de Gennes, P.G., Rev. Mod. Phys. 57, 827 (1985).Google Scholar
16. Zhou, M. and Sheng, P., to be published.Google Scholar
17. See, for example, Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, 2nd ed. (Academic, New York, 1986).Google Scholar
18 See, for example, Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon, New York, 1987).Google Scholar
19 Evans, D. J. and Morriss, G. P., Phys. Rev. Lett. 56, 2172 (1986).Google Scholar
20. Grest, G.S. and Kremer, K., Phys. Rev. A33, 3628 (1986).Google Scholar
21 Toxvaerd, S., J. Chem. Phys. 74, 1998 (1981).Google Scholar
22 Schoen, M., Cushman, J., Diestler, D., and Rhykerd, C. Jr., J. Chem. Phys. 88, 1394 (1988).Google Scholar
23 Magda, J., Tirrell, M., and Davis, H., J. Chem. Phys. 83, 1888 (1985).Google Scholar
24 Lee, J. K., Barker, J. A., and Pound, G. M., J. Chem. Phys. 60, 1976 (1974).Google Scholar