Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:47:14.368Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Impurities in Nanocrystalline Diamond Grain Boundaries

Published online by Cambridge University Press:  10 February 2011

Michael Sternberg
Affiliation:
Universität-GH Paderborn, Fachbereich Physik, Theoretiche Physik, D-33098 Paderborn, Germany
Peter Zapoll
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Thomas Frauenheim
Affiliation:
Universität-GH Paderborn, Fachbereich Physik, Theoretiche Physik, D-33098 Paderborn, Germany
Dieter M. Gruen
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Larry A. Curtiss
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Nanocrystalline diamond films grown on Si substrates at 800°C from hydrogen-poorplasmas have a number of highly desirable mechanical and electronic properties. Impurities were found by SIMS measurements to be uniformly distributed throughout the thickness of the films at a level of 1017–1018 cm−3. It is likely that the impurities are located at the grain boundaries, which play a crucial role in controlling important characteristics of the films, such as electrical conductivity and electron emission. Density-functional based tight-binding (DFTB) molecular dynamics simulations were performed for diamond high-energy high-angle (100) twist grain boundaries with impurities such as N, Si and H

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zuiker, C., Krauss, A. K., Gruen, D. M., Pan, X., Li, J. C., Csencsits, R., Erdemir, A., Bindal, C., and Fenske, G., Thin Solid Films, 270, 154 (1995).Google Scholar
2. Keblinski, P., Wolf, D., Phillpot, S. R., and Gleiter, H., J. Mater. Res., 13, 2077 (1998).Google Scholar
3. Cleri, F., Keblinski, P., Colombo, L., Wolf, D., Phillpot, S. R., Europhys. Lett., 46, 671 (1999).Google Scholar
4. Gruen, D. M., Redfern, P. C., Homer, D. A., Zapol, P., and Curtiss, L. A., J. Phys. Chem., 103, 5459 (1999).Google Scholar
5. Porezag, D., Frauenheim, Th., Kohier, Th., Seifert, G., and Kaschner, R., Phys. Rev. B, 51, 12947 (1995).Google Scholar
6. Elstner, M., Porezag, D., Jungnickel, G., Eisner, J., Haugk, M., Frauenheim, Th., Suhai, S., Seifert, G., Phys. Rev. B, 58, 7260 (1998).Google Scholar