Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:32:04.187Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Copper Thin Film Growth on β-Ta (002) Substrate

Published online by Cambridge University Press:  01 February 2011

Youhong Li
Affiliation:
Chemical and Materials Engineering Department, Arizona State University, Tempe, AZ 852876006, USA
James B. Adams
Affiliation:
Chemical and Materials Engineering Department, Arizona State University, Tempe, AZ 852876006, USA
Get access

Abstract

Tantalum can be used both as a diffusion barrier and an adhesion layer for copper metallization for semiconductor devices. Experiments show that β-Ta (200) substrates promote (111) texture growth in copper films. In this study, we first create an embedded atom method (EAM) Cu-Ta potential developed by our force matching method (FMM); then the potential is used for Molecular Dynamics (MD) simulations of initial copper thin film growth on β-Ta substrates. Both Cu/Ta interfacial structures and copper film structure are investigated. The relevance to (111) texturing is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Vinci, R.P., Zielinski, E.M., Bravman, J.C., Thin solid films, 262 (1995) 142153 Google Scholar
[2] Gladkikh, A, Karpovski, M, Palevski, A and Kaganovskii, Y. S., Journal of Physics D: Appl. Phys., 31 (1998) 16261629.Google Scholar
[3] Ryu, C., Loke, A. L. S., Nogami, T., Wong, S. S., Proceedings of IEEE International Reliability Physics Symposium, 1997, p201 Google Scholar
[4] Wang, J.Y. P., Zhang, H., Hashim, I., Dixit, G., Chen, F., Mat. Res. Soc. Proc. v564 1998 pp293298 Google Scholar
[5] Kwon, Kee-Won, Ryu, C., Sinclair, R., Wong, S. S., Applied Physics Letters, 71(1997) pp30693071 Google Scholar
[6] Wong, S. S., Ryu, C., Lee, H., Loke, ALS., Kwon, K. W., Bhattacharya, S., Eaton, R., Faust, R., Mikkola, B., Mucha, J., Ormando, J., Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat.No.98EX102). IEEE, New York, NY, USA; 1998; 304 pp107–9.Google Scholar
[7] Zielinski, E.M., Vinci, R. P., and Bravmean, J.C., J. Elec. Mat. 24 (1995) pp1485–92Google Scholar
[8] Weiss, K., Riedel, S., Schulz, S. E., Schwerd, M., Helneder, H., Wendt, H. and Gessner, T., Microelectronics Engineering 49 (2000) 433440 Google Scholar
[9] Rohrer, C.L., Modeling Simul. Mater. Sci. Eng. 2, 119(1994)Google Scholar
[10] Guellil, A.M. and Adams, J.B., J. Mater. Res., v7, 1992, pp639652 Google Scholar
[11] Johnson, R. A. and Oh, D.J., Journal of Materials Research, v4. n5, 1989, pp11951201.Google Scholar
[12] Wang, Z., Li, Y., Adams, J.B., Surface Science, 450 (2000) 5163.Google Scholar