Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:26:14.819Z Has data issue: false hasContentIssue false

A Molecular Dynamics Simulation Framework for an Al+Fe2O3 Reactive Metal Powder Mixture

Published online by Cambridge University Press:  15 March 2011

Vikas Tomar
Affiliation:
The George W Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 30332, U.S.A.
Min Zhou
Affiliation:
The George W Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 30332, U.S.A.
Get access

Abstract

This work focuses on the development of a classical molecular dynamics (MD) framework that can be used to analyze the quasi-static strength, elastic-constants, and dynamic strength of nanostructured Fe2O3+Al reactive metal powder (NRMP) mixtures. An interatomic potential is developed for the Fe2O3+Al NRMP system, accounting for the behavior of Al, Fe, Fe-Al intermetallics, Fe2O3, and Al2O3. This potential can be regarded as a generalization and combination of several existing potentials for the individual components in the system. The potential incorporates electronegativity equalization to account for pressure-induced phase transformation. In addition, the parameter set of the potential is capable of predicting the elastic properties of components over a range of 0 - 900 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Foiles, S. M. and Adams, J. B., Phys. Rev. B 40 5909 (1989).Google Scholar
2. Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F. and Kress, J. D., Phys. Rev. B 63 224106 (2001).Google Scholar
3. Ogata, S., Campbell, T. J., Tsuruta, K., Nakano, A., Kalia, R. K., Vashishta, P. and Loong, C.-K., in Oxidation dynamics of nanophase aluminum clusters: A molecular dynamics study, edited by Ma, E. and Bellon, P., (Materials Research Society Pittsburgh, 1998), p. 625630.Google Scholar
4. Duin, A. C. T. Van, Strachan, A., Stewman, S., Zhang, Q., Xu, X. and Goddard, W. A. III, J. Phys. Chem. A 107 (19), 3803 (2003).Google Scholar
5. Goddard, W. A. III, Zhang, Q., Uludogan, M., Strachan, A. and Cagin, T., in The reaxFF polarizable reactive force fields for molecular dynamics simulation of ferroelectrics, edited by Cohen, R. and Egami, T., (American Institute of Physics, Washington DC, 2002), p. 4550.Google Scholar
6. Carlsson, A. E. Solid State Physics 43 1 (1990).Google Scholar
7. Baskes, M. I. Phys. Rev. B 46 (5), 2727 (1992).Google Scholar
8. Parr, R. G. and Pearson, R. G., J. Am. Chem. Soc. 105, 7512 (1983).Google Scholar
9. Rappe, A. K. and Goddard, W. A. III, J. Phys. Chem. 95, 3358 (1991).Google Scholar
10. Strietz, F. H. and Mintmire, J. W., Phys. Rev. B 50 (16), 11996 (1994).Google Scholar
11. Baskes, M. I. and Johnson, R. A., Mod. Sim. Mat. Sci. Engg. 2, 147 (1994).Google Scholar
12. Besson, R. and Morillo, J., Phys. Rev. B 55 (1), 193 (1997).Google Scholar
13. Tomar, V. and Zhou, M., in Molecular dynamics simulation of shock induced detonation, edited by Furnish, Y. M. G. M. D., Forbes, W. (AIP Press, Portland, 2003), (In Press).Google Scholar
14. Gale, J. D. and Rohl, A. L., Mol. Sim. 29 (5), 291 (2003).Google Scholar
15. Gale, J. D. J. Phys. Chem. B 102 5423 (1998).Google Scholar
16. Huntington, H. B. in The elastic constants of crystals, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1958), p. 213.Google Scholar
17. Schiøtz, J., Vegge, T., Tolla, F. D. Di and Jacobsen, K. W., Phys. Rev. B 60 11971 (1999).Google Scholar
18. Haslam, A. J., Phillpot, S. R., Wolf, D., Moldovan, D. and Gleiter, H., Mat. Sci. Engg. A318 293 (2001).Google Scholar
19. Boslough, M. B. J. Chem. Phys. 92 (3), 1839 (1990).Google Scholar