Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:40:54.688Z Has data issue: false hasContentIssue false

Molecular Dynamics of Monomer, Oligomer, and Polymer Liquids in Porous Media: A Field-Cycling Nmr Relaxometry and NMR Field-Gradient Diffusometry Study

Published online by Cambridge University Press:  15 February 2011

R. Kimmich
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
S. Stapf
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
R.-O. Seitter
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
P. Callaghan
Affiliation:
Massey University, Department of Physics and Biophysics, Palmerston North, New Zealand
E. Khozina
Affiliation:
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany
Get access

Abstract

The molecular dynamics of fluids in porous media has been studied using field-cycling NMR relaxometry and NMR field-gradient diffusometry. The frequency dependences of the 1H and 2H spin-lattice relaxation times T1 of various liquids in porous glass reveal weak and strong adsorption behaviour depending on the polarity of the adsorbates. Correlation times eight orders of magnitude longer than in bulk have been observed. The T1 dispersion moreover reflects geometrical details of the matrix in a length scale three orders of magnitude longer than the adsorbate molecules. The mean-square displacements of adsorbate molecules on the surface are only one order of magnitude less than in bulk. The global diffusivity is reduced by tortuosity and porosity effects. The observed phenomena may be explained by bulk-mediated surface diffusion, i.e., Lévy walks. The dynamics of polymer chains much longer than the pore size is characteristicly different from that in bulk melts. There is evidence that the reptation mechanism explains at least a part of the phenomena observed for the porous matrix in contrast to findings with bulk polymer melts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abragam, A., The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).Google Scholar
2. Kimmich, R. and Weber, H. W., Phys. Rev. B 47, 11 788 (1993).Google Scholar
3. König, S., Sackmann, E., Richter, D., Zorn, R., Carlile, C., and Bayerl, T. M., J. Chem. Phys. 100, 3307 (1994).Google Scholar
4. Migchelsen, C. and Berendsen, H. J. C., J. Chem. Phys. 59, 296 (1973).Google Scholar
5. Kimmich, R., Nusser, W., and Gneiting, T., Colloids and Surfaces 45, 283 (1990).Google Scholar
6. Stapf, S., Kimmich, R., and NieS, J., J. Appl. Phys. 75, 529 (1994).Google Scholar
7. Kärger, J. and Ruthven, M., Diffusion in Zeolites (Wiley, New York, 1992).Google Scholar
8. Dullien, F. A. L., Porous Media, Fluid Transport and Pore Structure (Academic Press, New York, 1979).Google Scholar
9. Orbach, R., Science 231, 814 (1986).Google Scholar
10. Klafter, J., Zumofen, G., and Blumen, A., J. Phys. A: Math. Gen. 24, 4835 (1991).Google Scholar
11. Klammler, F. and Kimmich, R., Croat. Chem. Acta 65, 455 (1992).Google Scholar
12. Kimmich, R., Klammler, F., Skirda, V. D., Serebrennikova, I. A., Maklakov, A. I., and Fatkullin, N., Appl. Magn. Reson. 4, 425 (1993).Google Scholar
13. Callaghan, P. T., Coy, A., MacGowan, D., Packer, K. J., and Zelaya, F. O., Nature 351, 467 (1991).Google Scholar
14. Noack, F., Progr. in NMR Spectr. 18, 171 (1986).Google Scholar
15. Kimmich, R. and Fischer, E., J. Magn. Reson. A 106, 229 (1994).Google Scholar
16. Kärger, J., Pfeifer, H., and Heink, W., Adv. Magn. Reson. 12, 1 (1988).Google Scholar
17. Levitz, P., Ehret, G., Sinha, S. K., and Drake, J. M., J. Chem. Phys. 95, 6151 (1992).Google Scholar
18. Kimmich, R., Magn. Reson. Imag. 9, 749 (1991).Google Scholar
19. Kärger, J., Pfeifer, H., and Vojta, G., Phys. Rev. A 37, 4514 (1988).Google Scholar
20. Kärger, J., Lenzner, J., Pfeifer, H., Schwabe, H., Heyer, W., Janowski, F., Wolf, F., Ždanov, S., J. Am. Ceram. Soc. 66, 69 (1982).Google Scholar
21. Polnaszek, C. F. and Bryant, R. G., J. Chem. Phys. 81, 4038 (1984).Google Scholar
22. Ahlström, P., Teleman, O., and Jdnsson, B., J. Am. Chem. Soc. 110, 4198 (1988).Google Scholar
23. Kärger, J., Pfeifer, H., Riedel, E., and Winkler, H., J. Coll. Interface Sci. 44, 187 (1973).Google Scholar
24. D'Orazio, F., Bhattacharja, S., Halperin, W. P., and Gerhardt, R., Phys. Rev. Lett. 63, 43 (1989).Google Scholar
25. Kimmich, R., Stapf, S., Callaghan, P., and Coy, A., Magn. Reson. Imaging 12, 339 (1994).Google Scholar
26. Bychuk, O. V. and O'Shaughnessy, B., J. Chem. Phys. 101, 772 (1994).Google Scholar
27. Xia, T. K., Ouyang, J., Ribarsky, M. W., and Landman, U., J. Chem. Phys. 69, 1967 (1992).Google Scholar
28. Hentschke, R. and Winkler, R. G., J. Chem. Phys. 99, 5528 (1993).Google Scholar
29. Overloop, K. and Van Gerven, L., J. Magn. Reson. A 101, 147 (1993).Google Scholar
30. Bychuk, O. V. and O'Shaughnessy, B., J. Phys. II 4, 1135 (1994).Google Scholar
31. Blumen, A., Zumofen, G., and Klafter, J., Phys. Rev. A 40, 3964 (1989).Google Scholar
32. de Gennes, P. G., J. Chem. Phys. 55, 572 (1971).Google Scholar
33. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
34. Schweizer, K. S., J. Chem. Phys. 91, 5802 (1989).Google Scholar
35. Fatkullin, N. and Kimmich, R., J. Chem. Phys. 101, 822 (1994).Google Scholar
36. Kimmich, R., Fatkullin, N., Weber, H. W., and Stapf, S., J. Non-Cryst. Solids 172–174, 689 (1994).Google Scholar