Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T16:55:28.491Z Has data issue: false hasContentIssue false

Molecular Composition, Structure, and Sensitivity of Explosives

Published online by Cambridge University Press:  15 February 2011

Carlyle B. Storm
Affiliation:
Explosives Technology and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545
James R. Travis
Affiliation:
Explosives Technology and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

High explosives, blasting agents, propellants, and pyrotechnics are all metastable relative to reaction products and are termed energetic materials. They are thermodynamically unstable but the kinetics of decomposition at ambient conditions are sufficiently slow that they can be handled safely under controlled conditions. The ease with which an energetic material can be caused to undergo a violent reaction or detonation is called its sensitivity. Sensitivity tests for energetic materials are aimed at defining the response of the material to a specific situation, usually prompt shock initiation or a delayed reaction in an accident. The observed response is always due to a combination of the physical state and the molecular structure of the material. Modeling of any initiation process must consider both factors. The physical state of the material determines how and where the energy is deposited in the material. The molecular structure in the solid state determines the mechanism of decomposition of the material and the rate of energy release. Slower inherent reaction chemistry leads to longer reaction zones in detonation and inherently safer materials. Slower chemistry also requires hot spots involved in initiation to be hotter and to survive for longer periods of time. High thermal conductivity also leads to quenching of small hot spots and makes a material more difficult to initiate. Early endothermic decomposition chemistry also delays initiation by delaying heat release to support hot spot growth. The growth to violent reaction or detonation also depends on the nature of the early reaction products. If chemical intermediates are produced that drive further accelerating autocatalytic decomposition the initiation will grow rapidly to a violent reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lothrop, W.C. and Handrick, G.R., Chem. Rev. 44, 419 (1944).Google Scholar
2. Roth, J.F., Z. ges. Schiess-u. Sprengstoffw. 36, 4, (1941).Google Scholar
3. Kamlet, M.J., Proc. 3rd Symp. Det. 671 (1960).Google Scholar
4. Kamlet, M.J., Proc. 6th Symp. Det. 312 (1976).Google Scholar
5. Kamlet, M.J. and Adolph, H.G., Prop. &los. 4, 30 (1979).Google Scholar
6. Kamlet, M.J. and Adolph, H.G., Proc. 7th Symp. Det. 84 (1981).Google Scholar
7. Delpuech, A. and Cherville, J., Prop. & Explos. 3, 169 (1978).Google Scholar
8. Delpuech, A. and Cherville, J., Prop. & Explos. 4, 121 (1979).Google Scholar
9. Delpuech, A. and Cherville, J., Prop. & Explos. 4, 61 (1979).Google Scholar
10. Delpuech, A., Cherville, J., Michaud, C., Proc. 7th Symp. Det. 65 (1981).Google Scholar
11. Jain, S.R., Adiga, K.C., Pai Verneker, V.R., Comb. & Flame, 40, 71 (1981).Google Scholar
12. Sundararajan, R., Adiga, K.C., Jain, S.R., Comb. & Flame, 41, 243 (1981).Google Scholar
13. Sundararajan, R. and Jain, S.R., Comb. & Flame, 45, 47 (1982).CrossRefGoogle Scholar
14. Sundararajan, R. and Jain, S.R., Ind. J. Tech. 21, 474 (1983).Google Scholar
15. Brassy, C., Roux, M., Asanneau, M., Prop. Explos. & Pyrotech. 12, 53 (1987).Google Scholar
16. Mullay, J., Prop. Explos. & Pyrotech. 12, 60 (1987).CrossRefGoogle Scholar
17. Mullay, J., Prop. Explos. & Pyrotech. 12, 121 (1987).Google Scholar
18. Engelke, R., Schiferl, D., Storm, C.B., Earl, W.L., J. Phys. Chem. 92, 6815 (1988).CrossRefGoogle Scholar
19. Engelke, R., Earl, W.L., Storm, C.B., Prop. Explos. & Pyrotech. 13, 189 (1988).Google Scholar
20. Storm, C.B., Ryan, R.R., Ritchie, J.P., Hall, J.H., Bachrach, S.M., J. Phys. Chem. 93, 1000 (1989).Google Scholar
21. Storm, C.B., Stine, J.R., Kramer, J.F., in Chemistry and Physics of Energetic Materials, edited by Bulusu, S.N. (Kluwer Academic Publishers, Dordrecht, 1990) pp. 605640.CrossRefGoogle Scholar
22. Ayres, J.N., Montesi, L.J., Bauer, R.J., NOLTR 73–132 (1973), D. Price and T.P. Lippard, NOLTR, 66–87 (1966).Google Scholar
23. Armstrong, R.W., Coffey, C.S., DeVost, V.F., Elban, W.L., J. App. Phys. 68, 979 (1990).Google Scholar
24. Field, J.E., Bourne, N.K., Palmer, S.J.P., Walley, S.M., Philosophical Transactions of the Royal Society of London, series A, 339, 269 (1992), C. P Constantinou, T. Mukukdan, M.M. Chaudhri, Philosophical Transactions of the Royal Society of London, series A, 339, 403 (1992).Google Scholar
25. Kassoy, D.R., Kapila, A.K., Stewart, D.S., Combust. Sci. and Tech. 63, 33, (1989).CrossRefGoogle Scholar
26. Mader, C.L., Numerical Modeling of Detonations. (University of California Press, Berkely, 1979).Google Scholar
27. Asay, J.R., Graham, R.A., Straub, G.K., eds. Shock Waves in Condensed Matter-1983 (North-Holland, Amsterdam, 1984); S.C. Schmidt and N.C. Holmes, eds. Shockwaves in Condensed Matter-1987, (North Holland, Amsterdam, 1988).Google Scholar
28. Jackson, C.L. and Wing, J.F., J. Am. Chem. Soc. 9, 354 (1887); 10, 287 (1888).Google Scholar
29. Cady, H.H. and Larson, A.C., Acta Cryst. 23, 601 (1967).Google Scholar
30. Dobratz, B.M., LLNL Explosive Handbook, (Lawrence Livermore Laboratory, Livermore, CA, 1981).Google Scholar
31. Rogers, R.N., Thermochimica Acta, 11, 131 (1975).Google Scholar
32. Campbell, A.W., Flaugh, H.L., Popolato, A., Ramsay, J.B., Proc. 7th Symp. Det. 566 (1981), TATB as PBX 9502, 98% TMD; HMX as PBX 9501, 98% TMD.Google Scholar
33. Stine, J.R., Prediction of Crystal Densities of Organic Explosives by Group Additivity, (LA-8920, Los Alamos National Laboratory, 1981).Google Scholar
34. The numbers assigned to the compounds are taken from the Tables in ref. 21.Google Scholar
35. Coffey, C.S. and Jacobs, S.J., J. Appl. Phys. 52, 6991 (1981).Google Scholar
36. Sharma, J., Hoffsommer, J.C., Glover, D.J., Coffey, C.S., Forbes, J.W., Liddiard, T.P., Elban, W.L., Santiago, F., Proc. 8th Symp. Det. 725 (1985).Google Scholar
37. Sharma, J., Beard, B.C., Forbes, J., Coffee, C.S., Proc. 9th Symp. Det. 897 (1989).Google Scholar
38. Sharma, J., Hoffsommer, J.C., Glover, D. J, Coffey, C. S, Santiago, F., Stolovy, A., Yasuda, S., in Shock Waves in Condensed Matter-1983, edited by Asay, J.R., Graham, R.A., Straub, G.K., (North-Holland, Amsterdam, 1984) p. 543.Google Scholar
39. Brill, T.B. and Brush, P.J., ref. 24, p. 377.Google Scholar
40. Rothstein, L.R. and Peterson, R., Prop. & Explos. 4, 56, (1979).Google Scholar
41. Stine, J. R., J. Energetic Materials, 8, 41 (1990).Google Scholar
42. Stine, J.R., A Pure Explosive Data Base, Los Alamos National Laboratory.Google Scholar
43. Kamlet, M.J. and Jacobs, S., J. Chem. Phys. 48, 23 (1968).Google Scholar
44. Pepkin, V.I., Makhov, M.N., Lebedev, Yu.A., Dok. Akademii Nauk USSR, 232, 852 (1977)[232, 155 (1977)].Google Scholar
45. Catalano, E. and Rolon, C.E., Thermochimica Acta, 61, 37 (1983).Google Scholar
46. Rogers, R.N., Janney, J.L., Ebinger, M.H., Thermochimica Acta, 59, 287 (1982).Google Scholar
47. Frank-Kamenetski, D.A., Diffusion and Heat Transfer in Chemical Kinetics, (Plenum Press, New York, NY, 1969).Google Scholar
48. Swanson, B.I., private communication.Google Scholar
49. Storm, C. B., Chemical Contributions to Explosive and Propellant Sensitivity, in Workshop on Densensitization of Explosives and Propellants, TNO Prins Maurits Laboratory, The Netherlands, 1991.Google Scholar