Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:32:42.407Z Has data issue: false hasContentIssue false

Molecular Composites Based on Rigid Rod Polymers for Electrooptical Applications

Published online by Cambridge University Press:  16 February 2011

Gerhard Wegner
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
D. Neher
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
C. Heldmann
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
Th.K. Servay
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
H.-J. Winkelhahn
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
M. Schulze
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
C.-S. Kang
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, FR of Germany
Get access

Abstract

Novel rigid rod polymers substituted with NLO-active chromophores have been developed towards application in electrooptical signal Modulation. The Materials are based on rigid polyesters and polyesteramids, in which the chromophores are either covalently linked to the backbone by short flexible spacers or directly incorporated into the main chain. In the bulk these systems form macroscopically ordered structures with layers of rigid rod backbones separated by the side chain segments. The properties and stability of the induced polar order can thus be adjusted by morphological parameters like the layer distance or the orientation of the main chains relative to the substrate. The relaxation of the NLO activity with time is described by a Multi-exponential decay and shows enhanced time-temperature stability even above 100°C. The temperature dependence of the relaxation times exhibits unusual features that distinguishes these systems from conventional NLO side chain polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hornak, L.A. (Ed.), Polymers for Lightwave and Integrated Optics, (Marcel Dekker, New York 1992).Google Scholar
2. Servay, Th.K., Winkelhahn, H.-J., Schulze, M., Böffel, C., Neher, D., Wegner, G., Ber. Bunserges. Phys. Chem. 97, 1272 (1993).Google Scholar
3. Heldmann, C., Neher, D., Winkelhahn, H.-J., Kang, C.-S., Schulze, M., Wegner, G., to be submitted to Macromolecules.Google Scholar
4. Kang, C.-S., Heldmann, C., Winkelhahn, H.-J., Schulze, M., Neher, D., Wegner, G., Wortmann, R., Glania, C., Krämer, P., to be submitted.Google Scholar
5. Schulze, M., Trends in Polymer Science, submitted.Google Scholar
6. Ballauff, M., Makromol. Chem., Rapid Commun. 7, 407 (1986).Google Scholar
7. Ballauff, M., Angew. Chemie 101, 261 (1989).Google Scholar
8. Rodriguez-Parada, J.M., Duran, R., Wegner, G., Macromolecules 22, 2507 (1989).Google Scholar
9. Schrauwen, C., Pakula, T., Wegner, G., Makromol. Chem. 193, 11 (1992).CrossRefGoogle Scholar
10. Singer, K.D., Kuzyk, M.G., Sohn, J.E., in Nonlinear Optical and Electroactive Polymers, edited by Prasad, P.N. and Ulrich, D.R. (Plenum Press, New York, 1988), p. 189.Google Scholar
11. Winkelhahn, H.-J., Servay, Th.K., Kalvoda, L., Schulze, M., Neher, D., Wegner, G., Ber. Bunsenges. Phys. Chem. 97, 1287 (1993).Google Scholar
12. Paturle, A., Graafsma, H., Sheu, H.-S., Coppens, P., Phys. Rev. B 43, 14682 (1991).Google Scholar
13. Bosshard, Ch., Sutter, K., Schlesser, R., Günter, P., J. Opt. Soc. Am. B 10, 867 (1993).Google Scholar
14. Dumond, M., Levy, Y., Morichere, D., Organic Molecules for Nonlinear Optics and Photonics, edited by Messier, J., Kajzar, F. and Prasad, P. (Kluwer Academic Publishers, The Netherlands, 1991), p. 461.Google Scholar
15. Winkelhahn, H-J., Winter, H.H., Neher, D., submitted to Appl. Phys. Lett.Google Scholar
16. McCrum, N.G., Read, B.E., Williams, G., Anelastic and Dielectric Effects in Polymeric Solids, (John Wiley & Sons Ltd. Bristol, 1967).Google Scholar
17. Köhler, W., Robelle, D.R., Dao, P.T., Willand, C.S., Williams, D.J., Mol. Cryst. Liq. Cryst. Sci. Technol. B 3, 83 (1992).Google Scholar
18. Michell, M.A., Trends in Polymer Science 1, 144 (1993).Google Scholar
19. Jin, J-I., Lee, Y.-H., Shim, H.-K., Macromolecules 26, 1805 (1993).CrossRefGoogle Scholar
20. Xu, C., Wu, B., Becker, M.W., Dalton, L.R., Ranon, P.M., Shi, Y., Steier, W.H., Chem. Mater. 5, 1439 (1993).CrossRefGoogle Scholar
21. Stähelin, M., Walsh, C.A., Burland, D.M., Miller, R.D., Twieg, R.J., Volksen, W., J. Appl. Phys. 73, 8471 (1993).Google Scholar