Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:26:32.543Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxy study of a common a-GeO2 interfacial passivation layer for Ge- and GaAs-based MOS heterostructures

Published online by Cambridge University Press:  31 January 2011

Clement Merckling
Affiliation:
[email protected], IMEC, Leuven, Belgium
Julien Penaud
Affiliation:
[email protected], Riber, Bezons, France
Florence Bellenger
Affiliation:
[email protected], IMEC, Leuven, Belgium
David Kohen
Affiliation:
[email protected], IMEC, Leuven, Belgium
Geoffrey Pourtois
Affiliation:
[email protected], IMEC, Leuven, Belgium
Guy Brammertz
Affiliation:
[email protected], IMEC, Leuven, Belgium
Marco Scarrozza
Affiliation:
[email protected], IMEC, Leuven, Belgium
Mario El Kazzi
Affiliation:
[email protected], Societé Civile Synchrotron Soleil, Gif-sur-Yvette, France
Michel Houssa
Affiliation:
[email protected], KU Leuven, Leuven, Belgium
Johan Dekoster
Affiliation:
[email protected], IMEC, Leuven, Belgium
Matty Caymax
Affiliation:
[email protected], IMEC, Leuven, Belgium
Marc Meuris
Affiliation:
[email protected], IMEC, Leuven, Belgium
Marc Heyns
Affiliation:
[email protected], IMEC, Leuven, Belgium
Get access

Abstract

Future CMOS technologies will require the use of substrate material with a very high mobility. Therefore, the combination of Ge pMOS with GaAs nMOS devices is investigated for its possible use in advanced CMOS applications. In this work, the physical, chemical and electrical properties of a-GeO2 interfacial passivation layer (IPL) for n-Ge(001) and p-GaAs(001) have been investigated, using Molecular Beam Epitaxy (MBE) technique. The efficient electrical passivation of Ge/GeO2 will be demonstrated, and in the case of GaAs, the use of a thin a-GeO2 interlayer reduces the defects at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dimoulas, A. et al., Advanced Gate Stacks for High Mobility Semiconductors, Springer (2007)Google Scholar
2 Locquet, J.P. et al., J. Appl. Phys. 100, 051610 (2006)Google Scholar
3 Merckling, C. et al., Microelec. Eng. 84(9-10), 2243 (2007)Google Scholar
4 Merckling, C. et al., Appl. Phys. Lett. 89 (23), 232907 (2006)Google Scholar
5 Bellenger, F. et al., ECS Trans. 16(5), 411 (2008)Google Scholar
6 Merckling, C. et al., Microelec. Eng., doi:10.1016/j.mee.2009.03.048 (2009)Google Scholar
7 Matsubara, H., Sasada, T., Takenaka, M., and Takagi, S., Appl. Phys. Lett. 93, 032104 (2008)Google Scholar
8 Brammertz, G. et al., Appl. Phys. Lett. 93, 183504 (2008)Google Scholar
9 Massies, J., Delazy, F., Linh, N.T., J. Vac. Sci. Technol. 17(5) 1134 (1980)Google Scholar
10 Callegari, A., Hoh, P.D., Buchanan, D.A., Lacey, D., Appl. Phys. Lett. 54(4), 332 (1989)Google Scholar
11 Droopad, R. et al., J. Vac. Sci. Technol. B 24, 1479 (2006)Google Scholar
12 Souza, P. de et al., Appl. Phys. Lett. 92, 153508 (2008)Google Scholar
13 Kim, H.-S. et al., Appl. Phys. Lett. 92, 032907 (2008)Google Scholar
14 Soler, J.M. et al., J. Phys. Condens. Matter. 14, 2745 (2002)Google Scholar