Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:33:01.587Z Has data issue: false hasContentIssue false

A Molecular Architectural Approach to Self-Assembled Monolayers as NLO Materials

Published online by Cambridge University Press:  10 February 2011

Xiaoguang Yang
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Laura Smilowitz
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
C. Thomas Buscher
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Duncan McBranch
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Jeanne Robinson
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
DeQuan Li
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Self-assembled molecular architechtures of nonlinear optical (NLO) chromophores and their super-chromophores are discussed. The chromophores are derivatives of azobenzene sulfonates and the super chromophores are derivatives of calix[4]stilbazole and calix[4]stilbazolium. The studies of azobenzene sulfonates are aimed at understanding the surface coverage and molecular orientation in polar self-assembled monolayers (SAMs). The optimized molecular orientation was found to be 32±3 degree and the maximum surface coverage is approximately 2–4 molecules per nm2 depending on the molecular cross-section. The calixarene chromophores are macrocyclic compounds consisting of four simple D-π-A units bridged by methylene groups. These molecules were synthesized such that four D-π-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. Both simple and super-chromophores were subsequently fabricated into covalently bound selfassembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d33 = 60 pm/V at a fundamental wavelength of 890 nm. Furthermore, SHG imaging was employed to investigate the pattemed SAMs of NLO super chromophores.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Chen, K., Caldwell, W. B., Mirkin, C. A., J. Am. Chem. Soc., 135, 1193–4 (1993). (b) H. E. Katz, G. Scheller, T. M. Putvinski, M. L. Schilling, W. L. Wilson, C. E. Chidsey, Science, 254, 1485 (1991).Google Scholar
2. (a) Haller, I., J. Am. Chem. Soc., 100, 8050 (1978). (b) X. Zhang, M. Gao, X. Kong, Y. Sun, J. Shen, J. Chem. Soc., Chem Commun., 1055 (1994)Google Scholar
3. Balachander, N., Sukenik, C. N., Langmuir, 6(11), 1621–27 (1990).Google Scholar
4. (a) Hong, H.G., Sackett, D. D., Mallouk, T. E., Chem. Mater., 3, 521527 (1991). (b) H. Lee, L. J. Kepley, H.G. Hong, T. E. Mallouk, J. Am. Chem. Soc., 110, 618–620 (1988).Google Scholar
5. Buscher, C. T., McBranch, D., Li, D. Q., J. Am. Chem. Soc. Accepted.Google Scholar
6. Perkampus, H. H. UV-VIS Spectroscopy and Its Applications, Springer-Verlag, New York, 1992.Google Scholar
7. Li, D. Q., Swanson, B. I., Robinson, J. M., Hoffbauer, Mark A., J. Am. Chem. Soc., 115, 6975 (1993).Google Scholar
8. (a) Chang, S. -K., Cho, I., J. Chem. Soc. Perkin Trans. I, 211 (1986). (b) W. Verboom, A. Durie, R. J. M. Egberink, Z. Asfari, D. N. Reinhoudt, J. Org. Chem., 57, 1313 (1992).Google Scholar
9. Gutsche, C. D., Calixarenes, (Royal Society of Chemistry, 1989).Google Scholar
10. Li, D. Q., Ratner, M. A., Marks, T. J., Zhang, C. H., Yang, J., Wong, G. K., J. Am. Chem. Soc., 112, 7389 (1990).Google Scholar
11. Yang, X. G., McBranch, D., Swanson, B., Li, D. Q., Angnew. Chem., Accepted.Google Scholar
12. Li, D. Q., Buscher, C. T., Swanson, B. I., Chem. Mater., 6, 803 (1994).Google Scholar
13. Zhang, T., Zhang, C., Wong, G. K., J. Opt. Soc. Am. B. 7, 902 (1990).Google Scholar
14. Maker, P. D., Terhune, R. W., Nisenoff, M., Savage, C. M., Phys. Rev. Lett., 8, 21 (1962).Google Scholar
15. Shen, Y.R., Surface Science, 299/300, 551562 (1994).Google Scholar
16. (a) Boyd, G.T., Shen, Y.R., Hansch, T.W., Optics Lett., 11, 97 (1986). (b) L. Smilowitz, D. McBranch, J.M. Robinson, SPIE Proceedings on Ultrasensitive Detection, San Jose, CA, 1995.Google Scholar