Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:47:07.906Z Has data issue: false hasContentIssue false

Modulated Phases in Amphiphilic Monolayers at the Water/Air Interface

Published online by Cambridge University Press:  21 February 2011

David Andelman*
Affiliation:
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel
Get access

Abstract

Recently, modulated phases of insoluble monolayers of fatty acids and phospholipids spread on the water/air interface have been observed by fluorescence microscopy experiments. We propose a theoretical explanation of this observation by including electrostatic (dipolar) interactions in the total free energy calculation for the monolayer. Dipoles can originate from two sources: neutral amphiphiles have a permanent dipole and charged amphiphiles have an induced one. Modulated phases are found to be stable in two different limits: close to the liquid-gas transition and at low temperatures. Several phases with stripe and hexagonal symmetry are predicted and the phase transitions between them are calculated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Langmuir, I., L Am. Chem. Soc. 39, 354 (1917).Google Scholar
2. Langmuir, I., J. Chem. Phys. 1,756 (1933).Google Scholar
3. Adam, N. K., The Physics and Chemistry of Surfaces, 3rd ed., (Oxford University, London, 1941).Google Scholar
4. Gaines, G. L., Insoluble Monolayers at the Liquid Gas Interfaces (Wiley, New York, 1966).Google Scholar
5. Adamson, A. W., Physical Chemistry of Surfaces, 4th ed., (Wiley, New York, 1982).Google Scholar
6. Bell, G. M., Combs, L. L., Dunne, L. J., Chem. Rev. 81, 15 (1981).Google Scholar
7. Knobler, C. M., unpublished, (1988).Google Scholar
8. Hawkins, G. A., and Benedek, G. B., Phys. Rev. Left. 32, 524 (1974).Google Scholar
9. Kim, M. W. and Cannell, D. S., Phys. Rev. Left. 33, 889 (1975).Google Scholar
10. Kim, M. W. and Cannell, D. S., Phys. Rev. A 13, 411 (1976).Google Scholar
11. Pallas, N. R. and Pethica, B. A., Langmuir 1,509 (1985).Google Scholar
12. Middleton, S. R., Iwasaki, M., Pallas, N. R., Pethica, B. A., Proc. Roy. Soc. London Set. A 396, 143 (1984).Google Scholar
13. Legre, J. P., Albinet, G., Firpo, J. L., Tremblay, A. M. S., Phys. Rev. A 30, 2720 (1984).Google Scholar
14. Helm, C. A., Laxhauber, L., Löesche, M., Möhwald, M., J. Colloid Polym. Sci. 264, 46 (1986).Google Scholar
15. Middleton, S. R., and Pethica, B. A., J. Chem. Soc. Faraday Symp. 16, 109 (1981).Google Scholar
16. Kim, M. W. and Cannell, D. S., Phys. Rev. A 14, 1299 (1976).Google Scholar
17. Kjaer, K., Als-Nielsen, J., Helm, C. A., Laxhauber, L. A., Möhwald, M., Phys. Rev. Lett. 58, 2224 (1987).Google Scholar
18. Dutta, P., Peng, J. B., Lin, B., Ketterson, J. B., Prakash, M., Georgopoulous, P., Erlich, S., Phys. Rev. Lett. 58, 2228 (1987).Google Scholar
19. Barton, S. W., Thomas, B. N., Flom, E. B., Rice, S. A., Lin, B., Peng, J. B., Ketterson, J. B., Dutta, P., J. Chem. Phys. 89, 2257 (1988).Google Scholar
20. Rasing, Th., Sen, Y. N., Kim, M. W., Grubb, S., Phys. Rev. Lett. 55, 2903 (1985).Google Scholar
21. Abraham, B. M., Miyano, K., Xu, S. Q., Ketterson, J. B., Phys. Rev. Lett. 49, 1643 (1985).Google Scholar
22. McConnell, H. M., Tamm, L. K., Weis, R. M., Proc. Natl. Acad. Sci. (USA) 81, 3249 (1984).Google Scholar
23. Lösche, M., Sackmann, E., Möhwald, M., M., Ber. Bunsenges. Phys. Chem. 87, 848 (1983).Google Scholar
24. Losche, M. and Möhwald, , J. Phys. Lett. (Paris) 45, L785 (1984).Google Scholar
25. Lösche, M. and Möhwald, M., Eur. Biophys. 11, 35 (1985).Google Scholar
26. Moore, B., Knobler, C. M., Broseta, D., Rondelez, F., J. Chem. Soc. Faraday Trans. 2 86, 1753 (1986).Google Scholar
27. Meunier, J., Langevin, D., Boccara, N., Eds., Physics of Amphiphilic Layers, (Springer – Verlag, New York, 1987).Google Scholar
28. Andelman, D., Brochard, F., deGennes, P. G., Joanny, J. F., C.R. Acad. Sci. (Paris) 301, 675 (1985).Google Scholar
29. Andelman, D., Brochard, F., Joanny, J. F., J. Chem. Phys. 86, 3673 (1987).Google Scholar
30. Brochard, F., Joanny, J. F., Andelman, D., in Physics of Amphiphilic Layers, edited by Meunier, J., Langevin, D. and Boccara, N., (Springer Verlag, New York, 1987).Google Scholar
31. Keller, D. J., McConnell, H. M., Moy, V. T., J. Phys. Chem. 90, 2311 (1986).Google Scholar
32. Pieranski, P., Phys. Rev. Lett. 45, 569 (1980).Google Scholar
33. Kirkwood, J. G., Publ. Am. Assoc. Advmt. Sci. 21, 157 (1943).Google Scholar
34. Brazovskii, S. A., Zh. Eksp. Teor. Fiz. 68, 175 (1975) [Soy. Phys. JETP 41, 85 (1975)].Google Scholar
35. Garel, T. and Doniach, S., Phys. Rev. B 26, 325 (1982).Google Scholar
36. The exact summation of the inter-stripe electrostatic interactions is performed in ref. 31 and is shown also in ref. 30. In ref. 29, the identical inter-stripe contribution is expressed as an infinite sum. Taking only the first few terms in the infinite sum gives qualitatively similar results.Google Scholar
37. Keller, D. J., Korb, J. P., McConnell, H. M., J. Phys. Chem. 91, 6417 (1987).Google Scholar
38. McConnell, H. M. and Moy, V. T., J. Phys. Chem. 92, 4520 (1988); V. T. Moy, D. J. Keller, H. M. McConnell, J. Phys. Chem. 5233 (1988).Google Scholar
39. Heckl, W. M., Lösche, M., Cadenhead, D. A., Möhwald, H., Eur. Biophys. J. 14, 11 (1986).Google Scholar
40. Lösche, M., Duwe, H. -P., M~hwald, H., J. Coll. Interface Sci. 126, 432 (1988).Google Scholar