Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:13:17.540Z Has data issue: false hasContentIssue false

Modification of Epitaxial Oxide Films with Ion Implantation

Published online by Cambridge University Press:  15 February 2011

S. H. Hong
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027
J. R. Miller
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027
Q. Y. Ma
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027
E. S. Yang
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027
D. B. Fenner
Affiliation:
AFR Inc. East Hartford, CT 06108
C. Y. Yang
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
J. I. Budnick
Affiliation:
Department of Physics, University of Connecticut, Storrs, CT 06269.
Get access

Abstract

Ion implantation is used to modify the properties of oxide (YBCO and YSZ) thin films. Both superconducting and dielectric epitaxial oxide films, grown by laser ablation, are studied. The properties of the implanted oxide films are characterized by SIMS, XPS, DC resistivity and AC susceptibility measurements. By introducing reactive ions into superconducting oxide films, the conductivity of the material is inhibited possibly due to the interaction of the implanted ions with oxygen originally bound to the copper atoms. Al, Si, Ag and Ca ions are implanted into epitaxial YBCO films with injection energies ranging from 50 - 100 KeV and doses ranging from 1×1015 - 1×1016/cm2. XPS analysis shows that the implanted Si ions form SiOx. The inhibition method has been applied to the fabrication of superconducting electronic devices, such as SQUIDs. Dielectric oxide films are doped by the implantation of conductive and non-conductive ions. YSZ films are doped with Ag and Si ions and the ions are found to increase the conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clark, G.J., Marwick, A.D., Koch, R.H., and Laibowitz, R.B., Appl. Phys. Lett. 51 (1987) 139.Google Scholar
2. Pennycook, S. J., Feenstra, R., Chisholm, M. F. and Norton, D. P., Nucl. Instr. and Meth. in Phys. Res. B79 (1993) 641.Google Scholar
3. Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B36 (1987) 3608.Google Scholar
4. Cost, J.R., Wilis, J.O., Thompson, J.D., and Peterson, D.E., Phys. Rev. B37 (1988) 1563.Google Scholar
5. Li, Y., Xiong, G., and Gan, Z., Physica C 199 (1992) 269.Google Scholar
6. Ma, Q.Y. and Yang, E.S., “Fabrication of HTS Electronic Devices with Reactive Patterning Technique” in Material Science Forum 130–132“Synthesis and Characterization of High Tc Superconductors, edited by J.J., Pouch, S.A., Alterovitz, R.R., Romanofsky, and A.F., Hepp (Trans. Tech., Aedermannsdorf, Switzerland) (1993) pp. 579612.Google Scholar
7. Ma, Q.Y., Yang, E.S., and Treyz, G.V., Appl. Phys. Lett. 55 (1986) 896.Google Scholar
8. Hill, D.M., IIIMeger, H.M., Weaver, J.H., and Spencer, N.D., Surface Science 236 (1990) 377.Google Scholar
9. Ma, Q.Y., Dosanjh, P., Carolan, J.F., and Hardy, W.N., Appl. Phys. Lett. 63 (1993) 3663.Google Scholar
10. Ma, Q. Y., Dosanjh, P., Wong, A., Carolan, J. F. and Hardy, W. N., Supercond. Sci. Technol. 7 (1994) 294.Google Scholar
11. Ma, Q. Y., Wong, A., Carolan, J. F., Hardy, W. N., Kato, H., Hui, D. and Jaeger, N. A. F., IEEE Trans. Appl. Supercond. 5 (1995) 1181.Google Scholar
12. Ma, Q. Y., Wong, A., Dosanjh, P., Carolan, J. F. and Hardy, W. N., Appl. Phys. Lett. 65, (1994) 240.Google Scholar
13. Hong, S.H., Miller, J.R., Ma, Q.Y., Yang, E.S., and Luke, G.M., Appl. Phys. Lett. 67 (1995) 2717.Google Scholar
14. Bumett, P.J. and Page, T.F. in Mat. Res. Soc. Sym. Proc. 27, eds., G., Hubler et. al., (Elsevier Science, Amsterdam, 1984) 401.Google Scholar
15. Mchargue, C.J. and Yust, C.S., J.Am. Cerm. Soc. 67 (1984) 117.Google Scholar
16. Mchague, C.J., Defect Diffusion Forum 57–58 (1988) 359.Google Scholar
17. Legg, K.O., Cochran, J.K. Jr. Solnick, H.F., and Mann, X.L., Nucl. Instr. and Meth. in Phys. Res. B7–8 (1985) 535.Google Scholar
18. Prawer, S., Hoffinan, A., Petravic, M., Kalish, R., J.Appl. Phys. 73 (1993) 3841.Google Scholar
19. Kohiki, S., Nishitan, M., and Wada, T., J. Appl. Phys. 75 (1994) 2069.Google Scholar
20. Tomio, T. and Miki, H., J. Appl. Phys. 76 (1994) 5886.Google Scholar
21. Fenner, D.B., Viano, A.M., Fork, D.K., Connell, G.A., Boyce, J.B., Ponce, F.A., and Tramontana, J.C., J. Appl. Phys. 69 (1991) 2176.Google Scholar