Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T02:37:27.906Z Has data issue: false hasContentIssue false

Models of Mixed Metal-Oxide Interfaces for Atomistic Materials Simulations

Published online by Cambridge University Press:  13 June 2012

Steven M. Valone*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. LA-UR-12-20829 25 Apr 2012
Get access

Abstract

Nuclear fuels and materials present special problems to atomistic-scale modeling. At a metal-metal-oxide interface, the metal centers are charged on the oxide side, but neutral on the metallic side. The intimate contact necessitates that atomistic models for these materials be both compatible and consistent with one another at some level. A new "fragment’’ Hamiltonian (FH) model, at the atomistic level, is presented that reduces qualitatively to existing, successful models for metals, such as the embedded atom method, and ceramics, such as the charge equilibration models. Moreover, the FH model possesses both electron hopping and fundamental gaps that appear as separate terms in a generalized embedding function. The electron hopping contributions come from both one-electron and two-electron sources. These contributions appear as a result of the FH point of view, rather than being postulated. The model obeys certain wellknown theoretical limits that come from the nonlinearity of electron hopping processes as the volume of a crystal is changed. The generalized notion of embedding entails two variables instead of one. The ability to account for multiple charge states in the cations leads to the capability within the model to distinguish the qualitative differences among metallic, ionic, and covalent bonding environments. The details of all of these energies, among with fragmentfragment interactions, combine to determine the state of the atom in the material.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baskes, M. I., Phys. Rev. B 46, 27272742 (1992).Google Scholar
2. Baskes, M. I., Srinivasan, S. G., Valone, S. M., and Hoagland, R. G., Phys. Rev. B 75, 94113 (2007).Google Scholar
3. Baskes, M. I., Phys. Rev. B 62, 15532 (2000).Google Scholar
4. Valone, S. M., Baskes, M. I., and Rudin, S. P., J. Nucl. Mater. 422, 2026 (2012).Google Scholar
5. Valone, S. M., J. Chem. Theory Comput. 7, 22532261 (2011).Google Scholar
6. Valone, S. M., J. Phys. Chem. Lett. 2, 26182622 (2011).Google Scholar
7. Rappé, A. K. and Goddard, William A. III, J. Phys. Chem. 95, 33583363 (1991).Google Scholar
8. Ghosh, S. K., Intern. J. Quant. Chem. 49, 239251 (1994).Google Scholar
9. Hirsch, J. E., Phys. Rev. B 48, 33273339 (1993).Google Scholar
10. Morales, J. and Martínez, T. J., J. Phys. Chem. A 108, 30763084 (2004).Google Scholar
11. Parr, R. G. and Pearson, R. G., J. Am. Chem. Soc. 105, 75127516 (1983).Google Scholar
12. Sutton, A. P., Electronic Structure of Materials, (Oxford University Press, Oxford, UK, 1993), p. 227.Google Scholar
13. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 4555 (1984).Google Scholar
14. Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F. and Kress, J. D., Phys. Rev. B 63, 224106 (2001).Google Scholar
15. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 66716687 (1992), and References 26 and 27 therein.Google Scholar
16. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 1116911186 (1996).Google Scholar
17. Chen, S-P., Philos. Mag. 89, 18131822 (2009).Google Scholar
18. Iczkowski, R. P. and Margrave, J. L., J. Am. Chem. Soc. 83, 35473551 (1961).Google Scholar