Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T02:13:09.165Z Has data issue: false hasContentIssue false

Modelling the Structure of Ion Bombarded Binary Alloys

Published online by Cambridge University Press:  16 February 2011

Paolo M. Ossi*
Affiliation:
Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano; Unità cINFM di Trento, 38050 Povo (TN), Italy
Get access

Abstract

An atomistic model of phase formation in ion bombarded thin binary metallic films is discussed. Compositional changes occur at the interface between collision cascades and crystal matrix. Relaxation arises via elementary charge transfer reactions, with formation of dimers of an effective compound. Comparing surface and thermochemical properties of initial and effective alloys, a set of conditions specific to vitrification and respectively tocrystal formation under ion bombardment is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ossi, P.M., Riv. del Nuovo Cim. (15), n. 5 (1992).Google Scholar
2. Menon, S.K. and Krishnan, K.M., Phil. Mag. Lett. (66) 281 (1992).Google Scholar
3. Ossi, P.M., Zeits. Phys. B, Condens. matt. (93) 243 (1994).Google Scholar
4. Boer, F.R. de, Boom, R., Mattens, W.C.M., Miedema, A.R. and Niessen, A.K., Cohesion in Metals. Transition Metal Alloys (North-Holland, Amsterdam, 1989).Google Scholar
5. Hamilton, J.C., Phys. Rev. Lett. (42) 989 (1979).Google Scholar
6. Crampin, S., J. Phys. Condens. Matt. (5) L443 (1993).Google Scholar
7. Ohnishi, S., Weinert, M. and Freeman, A.J., Phys. Rev. (B30) 36 (1984).Google Scholar
8. Ajayan, P.M. and lijima, S., J. Non. Cryst. Sol. (150) 423 (1992).Google Scholar
9. Ziemann, P., Miehle, W. and Plewnia, A., Nucl. Inst. Meth. (B80/81) 370 (1993).Google Scholar
10. Thomé, L., Benkoulal, T. and Jagielski, J., J. Appl. Phys. (75) 181 (1994)Google Scholar