Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:42:44.441Z Has data issue: false hasContentIssue false

Modelling Carbon Nanotube Based Bio-Nano Systems: A Molecular Dynamics Study

Published online by Cambridge University Press:  15 February 2011

Yong Kong
Affiliation:
Max-Planck-Institut fur Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany
Daxiang Cui
Affiliation:
Max-Planck-Institut fur Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, CA 92521-0425, USA
Huajian Gao*
Affiliation:
Max-Planck-Institut fur Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany
*
*Corresponding author
Get access

Abstract

Molecular dynamics simulations were performed to study dynamics of carbon nanotube (CNT) interacting with biological molecules (DNA oligonucleotide and protein polypeptide) in an aqueous environment. Our results showed that an oligonucleotide or a polypeptide could be spontaneously inserted into a CNT, provided that the tube size is large enough and the oligonucleotide/polypeptide is appropriately aligned with CNT. The van der Waals and hydrophobic forces were found to be important for the insertion process, with the former playing a more dominant role in the CNT-oligonucleotide and CNT-polypeptide interaction. We discussed temperature effect on the filling process and found that higher temperature can accelerate encapsulation of biological molecules. Our study has general implications on filling nanoporous materials with water solutes of molecular cluster or nanoparticles. The encapsulated CNT-oligonucleotide/polypeptide or other CNT based bio-nano-complex can be further exploited for applications such as molecular electronics, sensors, electronic DNA sequencing, and nanotechnology of gene/drug delivery systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., and Dai, H., Nano Letters 2, 285288 (2002).Google Scholar
2 Basiuk, E. V., Rybak-Akimova, E. V., Basiuk, V. A., Acosta-Najarro, D., and Saniger, J. M., Nano Letters 2, 12491252 (2002).Google Scholar
3 Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., and Dai, H., Peng, S. and Cho, K. J., Nano Letters 3, 347351 (2003).Google Scholar
4 Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., Iijima, S., Phys. Rev. Lett. 85, 53845387 (2000).Google Scholar
5 Gogotsi, Y., Libera, J. A., Guvenc-Yazicioglu, A., Megaridis, C. M., Appl. Phys. Lett. 79, 10211023 (2001).Google Scholar
6 Hummer, G., Rasalah, J. C., Noworyta, J. P., Nature 414, 188190 (2001).Google Scholar
7 Guo, Z., Sadler, P. J., Tsang, S. C., Adv. Mater. 10, 701703 (1998).Google Scholar
8 Gao, H., Kong, Y., Cui, D., Ozkan, C. S., Nano Letters 3, 471473 (2003).Google Scholar
9 Lindahl, E., Hess, B. and van der Spoel, D., J. Mol. Mod. 7, 306317 (2001).Google Scholar
10 Teleman, O., Jönsson, B., Engström, S., Mol. Phys. 60, 193203 (1987).Google Scholar
11 Berendsen, H. J. C., Postma, J. P. M., Nola, A. D., and Haak, J. R., J. Chem. Phys. 81, 36843690 (1984).Google Scholar
12 Darden, T., York, D., and Pedersen, L., Chem. Phys. 98, 1008910092 (1993).Google Scholar
13 Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., J. Am. Chem. Soc. 117, 51795197 (1995).Google Scholar
14 Gunsteren, W. F. van, Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P., Mark, A. E., Scott, W. R. P., Tironi, I. G., “Biomolecular Simulation: The GROMOS96 manual and user guide”, (1996) Zürich, Switzerland: Hochschulverlag AG an der ETH Zürich.Google Scholar
15 Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III, and Skiff, W. M., J. Am. Chem. Soc. 114, 1002410035 (1992).Google Scholar
16 Walther, J. H., Halicioglu, T., Jaffe, R., Koumoutsakos, P., J. Phys. Chem. B 105, 99809987 (2001).Google Scholar