Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:52:18.319Z Has data issue: false hasContentIssue false

Modeling the Crystal Growth of Cadmium Zinc Telluride: Accomplishments and Future Challenges

Published online by Cambridge University Press:  31 January 2011

Jeffrey Derby
Affiliation:
David Gasperino
Affiliation:
[email protected], University of Minnesota, Dept. of Chemical Eng. and Matls. Science, Minneapolis, Minnesota, United States
Nan Zhang
Affiliation:
[email protected], University of Minnesota, Dept. of Chemical Eng. and Matls. Science, Minneapolis, Minnesota, United States
Andrew Yeckel
Affiliation:
[email protected], University of Minnesota, Dept. of Chemical Eng. and Matls. Science, Minneapolis, Minnesota, United States
Get access

Abstract

The availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties would lead to improved performance of gamma radiation detectors fabricated from them. However, even though CZT crystals are the central element of these systems, there remains relatively little fundamental understanding about how these crystals grow and, especially, how crystal growth conditions affect the properties of grown crystals. This paper discusses the many challenges of growing better CZT crystals and how modeling may favorably impact these challenges. Our thesis is that crystal growth modeling is a powerful tool to complement experiments and characterization. It provides an important approach to close the loop between materials discovery, device research, systems performance, and producibility. Specifically, we discuss our efforts to model gradient freeze furnaces used to grow large CZT crystals at Pacific Northwest National Laboratories and Washington State University. Model results are compared with experimental measurements, and the insight gained from modeling is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.1. Raiskin, E. and Butler, J.F.. IEEE Trans. Nuclear Science Science, 35:81, 1988.Google Scholar
2. Butler, J.F. Lingren, C.L. and Doty, F.P. IEEE Trans. Nucl. Phys., 39:605, 1992.Google Scholar
3. Doty, F.P. Butler, J.F. Schetzina, J.F. and Bowers, K.A.. J. Vac. Sci. Technol. B, 10:1418, 1992.Google Scholar
4. Butler, J.F. Apotovsky, B. Niemela, A. and Sipila, H.. In Proceedings of the SPIE SPIE, volume, 2009, page p. 121. SPIE, Bellingham, WA, 1993.Google Scholar
5. James, R.B. Schlesinger, T.E. Lund, J. and Schieber, M.. In Schlesinger, T.E. and James, R.B., editors, Semiconductors for Room Temperature Nuclear Detector Applications Applications, volume 43, page p. 335. Academic Press, San Diego, 1995.Google Scholar
6. James, R.B. and Siffert, P. editors, “Room Temperature Semiconductor Detectors: Proceedings of the 11th International Workshop on Room Temperature Semiconductor X- and Gamma Gamma-Ray Detectors and Associated Electronics,” Nucle Nuclear Instruments and ar Methods in Physics Research A, volume, 458, 2001.Google Scholar
7. Szeles, C. Cameron, S.E. Ndap, J. J.-O., Chalmers, W.C. IEEE Trans. Nuclear Science Science, 49:2535, 2002.Google Scholar
8. Szeles, C., Cameron, S.E. Soldner, S. A., Ndap, J. J.-O., and Reed, M. D., Journal of ELECTRONIC MA MATERIALS TERIALS Vol.33, 742752 (2004).Google Scholar
9. Rudolph, P. Progr. Crystal Growth and Charact. 29, 275 (1994).Google Scholar
10. Rudolph, P.. In Isshiki, M. editor, Recent Development of Bulk Crystal Growth Growth. Research. Signpost, Trivandrum, India, 1998.Google Scholar
11. Griesmer, J.J. Kline, B. Grosholz, J. Parnham, K., Gagnon, D., In: Proceedings of IEEE. MIC 2001, San Diego, Nov. 2001.Google Scholar
12. Sen, S. Konkel, W.H. Tighe, S.J. Bland, L.G. Sharma, S.R. and Taylor, R.E.. J. Crystal Growth Growth, 86:111117, 1988.Google Scholar
13. Pfeiffer, M. and Mühlberg, M.. J. Crystal Growth Growth, 118:269, 1992.Google Scholar
14. Parfeniuk, C. Weinberg, F. Samarasekera, I.V. Schvezov, C. and Li, L.. J. Crystal Growth, 119:261, 1992.Google Scholar
15. Kuppurao, S. Brandon, S. and Derby, J.J. J. Crystal Growth 155, 93102 (1995).Google Scholar
16. Kuppurao, S. Brandon, S. and Derby, J.J. J. Crystal Growth 155, 103111 (1995).Google Scholar
17. Kuppurao, S. Brandon, S. and Derby, J.J. J. Crystal Growth 158 459470 (1996).Google Scholar
18. Kuppurao, S. and Derby, J.J. J. Crystal Growth 172 350360 (1997).Google Scholar
19. Edwards, K. and Derby, J.J.. J. Crystal Growth Growth, 179, 120, 1997.Google Scholar
20. Edwards, K. and Derby, J.J.. J. Crystal Grow Growth, 179, 133, 1997.Google Scholar
21. Edwards, K. and Derby, J.J.. J. Crystal Growth Growth, 206, 3750, 1999.Google Scholar
22. Yeckel, A. Doty, F.P. and Derby, J.J. J. Crystal Growth 203, 87102 (1999).Google Scholar
23. Yeckel, A. and Derby, J.J. J. Crystal Growth 209, 734750 (2000).Google Scholar
24. Yeckel, A. and Derby, J.J. J. Crystal Growth 233, 599608 (2001).Google Scholar
25. Yeckel, A. Compere, G. Pandy, A. and Derby, J.J.. J. Crystal Growth Growth, 263:629644, 2004.Google Scholar
26. Yeckel, A. Pandy, A. and Derby, J.J. Int. J. Numer. Meth. Engng. 67, 17681789 (2006).Google Scholar
27. Pandy, A. Yeckel Reed, M. Szeles, C. Hainke, M., Müller, G., and Derby, J.J. J. Crystal Growth 276, 133147 (2005).Google Scholar
28. Lun, L. Yeckel, A. Szeles, C. Reed, M. Daoutidis, P. and Derby, J.J. J. Crystal Growth 290, 3543 (2006).Google Scholar
29. Lun, L. Yeckel, A. Derby, J.J. and Daoutidis, P. in: Proceedings of the IEEE 2007 Mediterranean Conference on Control and Automation (MED 2007), Athens, Greece, June 27–29, 2007.Google Scholar
30. Kurz, M. Pusztai, A. and Müller, G., J. Crystal Growth, 198:101, 1999.Google Scholar
31. Backofen, R. Kurz, M. and Müller, G., J. Crystal Growth, 199:210, 2000.Google Scholar
32. Gasperino, D. Jones, K. Lynn, K. Bliss, M. and Derby, J.J. J. Crystal Growth Growth, to be, submitted, 2008.Google Scholar
33. Gasperino, D. Ph.D., thesis University of Minnesota, in preparation.Google Scholar
34. Funaki, M. Shiraki, H. Tamaki, M. Mito, Y. and Ohno, R. Presentation L3.2 at the 2009 Spring MRS Meeti Meeting.Google Scholar
35. Duffar, T. Paret-Harter, I., and Dusserre, P. J. Crystal Growth 100 (1990) 171184.Google Scholar
36. Regel, L.L. and Wilcox, W.R. Microgravity Sci. Technol. 14 (1999) 152166.Google Scholar
37. Larson, D.J. Microgravity News 1(6) (Winter 1994) 10.Google Scholar
38. Duffar, T. Dusserre, P. Giacometti, N. K. Benz, W. Fiederle, M. Launay, J.C. Dieguez, E. and Roosen, G. Acta Astronautica 48 (2001) 157161.Google Scholar
39. Stelian, C. Yeckel, A. and Derby, J.J. J. Crystal Growth 311, 25722579 (2009).Google Scholar
40. Stelian, C. Volz, M.P. and Derby, J.J. J. Crystal Growth in press (2009).Google Scholar
41. Rudolph, P.. Cryst. Res. Technol. 38:542, 2004.Google Scholar
42. Sinno, T. J. Crystal Growth 303, 511 (2007)Google Scholar
43. Sinno, T. Dornberger, E. Ammon, W. von, Brown, R.A. and Dupret, F. Materials Science and Engineering, 28 (2000) 149198.Google Scholar