Article contents
Modeling of Spent Fuel Oxidation at Low Temperature
Published online by Cambridge University Press: 19 October 2011
Abstract
During dry storage, the oxidation of the spent fuel in case of cladding and container failure (accidental scenario) could be detrimental for further handling of the spent fuel rod and for the safety of the facilities. Depending on whether the uranium dioxide is under the form of powder or pellet, irradiated or unirradiated, the weight gain curves do not present the same shape. To account for these different behaviours, two models have been developed. Firstly, the oxidation of unirradiated powders has been modelled based on the coexistence, during the oxidation, of two intermediate products, U4O9 and U3O7. The comparison between the calculation and the literature data is good in terms of weight gain curves and chemical diffusion coefficient of oxygen within the two phases. Secondly, the oxidation of spent fuel fragments is approached by a convolution procedure between a grain oxidation model and an empirical parameter which represents the linear oxidation speed of grain boundary or an average distance able to cover the entire spent fuel fragment. This procedure of calculation allows in one hand to account for the incubation period noticed on unirradiated pellets or spent fuel and in another hand to link the empirical parameter to physical as porosity, cracks or linear power, or operational parameters such as fission gas release (FGR) respectively. A comparison of this new modelling with experimental data will be proposed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
REFERENCES
- 1
- Cited by