Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T07:21:15.832Z Has data issue: false hasContentIssue false

Modeling of Deformation in Nanocrystalline Copper Using An Atomistic-Based Continuum Approach

Published online by Cambridge University Press:  01 February 2011

D. H. Warner
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
F. Sansoz
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
J. F. Molinari
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
Get access

Abstract

The deformation of copper with grain size less than 10 nm is investigated using a 2D continuum model incorporating atomistically-based constitutive relations. The local constitutive response of a series of symmetric and asymmetric tilt grain boundaries is obtained using an atomistic quasicontinuum method under tension and shear. The atomistic results show that it is possible to associate a constant maximum stress with each deformation mechanism triggered in the GB vicinity, i.e. GB sliding and decohesion, atom shuffling and partial dislocation emission. The GB strength is always found weaker in shear than in tension. This information is incorporated into a continuum polycrystalline model tested under compression. This model provides useful insights, in the absence of intragranular plasticity, into the onset of macroscopic quasi-plasticity, which results from GB sliding and collective grain rotation mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Swygenhoven, H. and Weertman, J.R., Scr. Mater. 49, 625 (2003).Google Scholar
2. Kumar, K.S., Van Swygenhoven, H. and Suresh, S., Acta Mater. 51, 5734 (2003)Google Scholar
3. Van Swygenhoven, H and Derlet, P.M., Phys. Rev. B 64, 224105 (2001).Google Scholar
4. Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A. and Wang, P., Acta Mater. 51, 387 (2003).Google Scholar
5. Schiotz, J. and Jacobsen, K.W., Science 301, 1357 (2003).Google Scholar
6. Chen, M., Ma, E., Hemker, K.J., Sheng, H., Wang, Y. and Cheng, X., Science 300, 1275 (2003).Google Scholar
7. Liao, X.Z., Zhou, F., Lavernia, E.J., Srinivasan, S.G., Baskes, M.I., He, D.W. and Zhu, Y.T., App. Phys. Lett. 83, 632 (2003).Google Scholar
8. Hasnaoui, A., Van Swygenhoven, H. and Derlet, P.M., Science 300, 1550 (2003).Google Scholar
9. Rose, J.H., Ferrante, J. and Smith, J.R., Phys. Rev. Letters 47, 675 (1981).Google Scholar
10. Chandra, N. and Dang, P., J. Mater. Sci. 34, 655 (1999).Google Scholar
11. Grujicic, M., Cao, G. and Joseph, P.F., Int. J. Multiscale Comp. Eng. 1, 1 (2003).Google Scholar
12. Tadmor, E.B., Ortiz, M. and Phillips, R., Philos. Mag. A 73, 1529 (1996).Google Scholar
13. Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R. and Ortiz, M., J. Mech. Phys. Solids 47, 611 (1999).Google Scholar
14. Foiles, S.M., Baskes, M.I. and Daw, M.S., Phys. Rev. B 33, 7983 (1986).Google Scholar
15. Rittner, J.D. and Seidman, D.N., Phys. Rev. B 54, 6999 (1996).Google Scholar
16. Li, J., Modelling Simul. Mater. Sci. Eng. 11, 173 (2003).Google Scholar
17. Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C., Phys. Rev. B 58, 11085 (1998)Google Scholar
18. Molinari, J.F., Ortiz, M., Int. J. Numer. Meth. Eng. 53, 1101 (2002)Google Scholar
19. Cheng, S., Spencer, J.A. and Milligan, W.W., Acta Mater. 51, 4505 (2003).Google Scholar
20. Taylor, L. and Flanagan, D., Technical Report SAND86–0594, Sandi National Laboratories, Albuquerque, NM (1987).Google Scholar
21. Schiotz, J., Vegge, T., Di Tolla, F.D., and Jacobsen, K.W., Phys. Rev. B 60, 971 (1999).Google Scholar