Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:25:13.811Z Has data issue: false hasContentIssue false

Modeling of Advanced Light Trapping Approaches in Thin-Film Silicon Solar Cells

Published online by Cambridge University Press:  28 June 2011

Miro Zeman
Affiliation:
Delft University of Technology, PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Olindo Isabella
Affiliation:
Delft University of Technology, PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Klaus Jäger
Affiliation:
Delft University of Technology, PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Pavel Babal
Affiliation:
Delft University of Technology, PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Serge Solntsev
Affiliation:
Delft University of Technology, PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Rudi Santbergen
Affiliation:
Delft University of Technology, PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Get access

Abstract

Due to the increasing complexity of thin-film silicon solar cells, the role of computer modeling for analyzing and designing these devices becomes increasingly important. The ASA program was used to study two of these advanced devices. The simulations of an amorphous silicon solar cell with silver nanoparticles embedded in a zinc oxide back reflector demonstrated the negative effect of the parasitic absorption in the particles. When using optical properties of perfectly spherical particles a modest enhancement in the external quantum efficiency was found. The simulations of a tandem micromorph solar cell, in which a zinc oxide based photonic crystal-like multilayer was incorporated as an intermediate reflector (IR), demonstrated that the IR resulted in an enhanced photocurrent in the top cell and could be used to optimize the current matching of the top and bottom cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zeman, M., Isabella, O., et al. , Mater. Res. Soc. Symp. Proc. Vol. 1245, 2010, 1245-A03-03.10.1557/PROC-1245-A03-03Google Scholar
2. Springer, J., Poruba, A., Mullerova, L., et al. , J. Appl. Phys. 95, 1427 (2004).10.1063/1.1633652Google Scholar
3. Burgelman, M., Verschraegen, J., et al. , Prog. Photovolt: Res. Appl. 12, 2004, p. 143153.10.1002/pip.524Google Scholar
4. Zeman, M. and Krc, J., Journal of Materials Research 23 (4), 2008, p. 889898.10.1557/jmr.2008.0125Google Scholar
5. Zeman, M., Willemen, J.A., et al. , Sol. Ener. Mat. Sol. C. 46, 81 (1997).10.1016/S0927-0248(96)00094-3Google Scholar
6. Atwater, H.A. and Polman, A., Nature Materials 9, 205 (2010).10.1038/nmat2629Google Scholar
7. Bergman, D.J., Physics Reports 43, 377 (1978).10.1016/0370-1573(78)90009-1Google Scholar
8. Stuart, H.R. and Hall, D.G., Appl. Phys. Lett. 73, 3815 (1998).10.1063/1.122903Google Scholar
9. Liang, R., Santbergen, R. and Zeman, M., Advances in Science and Technology 47, 182 (2010).10.4028/www.scientific.net/AST.74.182Google Scholar
10. Santbergen, R., Liang, R. and Zeman, M., Conference Record of the 35th IEEE Photovoltiac Specialists Conference, Honolulu, Hawaii, 748 (2010).Google Scholar
11. Krc, J., Zeman, M., Luxembourg, S. and Topic, M., Appl. Phys. Lett. 94 (15) (2009) 153501.10.1063/1.3109781Google Scholar
12. Isabella, O., Lipovšek, B., Krc, J., and Zeman, M., Mater. Res. Soc. Symp. Proc. Vol. 1153, 2009, 1153-A03-05.10.1557/PROC-1153-A03-05Google Scholar