Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:15:55.010Z Has data issue: false hasContentIssue false

Modeling and characterization of the amino propeptide of collagenα1(XI), a regulatory domain in collagen fibrillar architecture.

Published online by Cambridge University Press:  01 February 2011

Lisa R. Warner
Affiliation:
Department of Biology and Biomolecular Research Center Department of Materials Science and Engineering
Arzhang Fallahi
Affiliation:
Department of Biology and Biomolecular Research Center
Becky Kroll
Affiliation:
Department of Biology and Biomolecular Research Center
Katey M. Irwin
Affiliation:
Department of Biology and Biomolecular Research Center
Sorcha Yingst
Affiliation:
Department of Biology and Biomolecular Research Center
Linda M. Mercer
Affiliation:
Department of Biology and Biomolecular Research Center
Susan E. Shadle
Affiliation:
Department of Chemistry, 1910 University Drive, MS 1515, Boise State University, Boise, Idaho, 83725
Julia Thom Oxford
Affiliation:
Department of Biology and Biomolecular Research Center Department of Materials Science and Engineering
Get access

Abstract

Connective tissues such as cartilage, tendon, skin, bone, and arteries are composite bio-materials that contain predominantly water, collagen, proteoglycans and hyaluronic acid. Like any composite material, the components themselves and their interactions dictate the properties of the material. Fibrillar collagens are the principal structural molecules of the connective tissues and require regulated assembly and growth. Previous work from our lab indicates that the amino propeptide (Npp) domain of collagen type XI α1 chain regulates fibril diameter growth. Npp is a globular domain that is thought to sterically hinder the dense packing assembly of collagen molecules in fibrils. This mechanism of regulating collagen fibril assembly may be more complex than steric hindrance. We hypothesize that the Npp domain has a more dynamic role in establishing the structure/function relationship of collagen fibrils in connective tissues. In this study, the molecular structure of Npp was predicted by modeling. The model predicted putative binding sites for heparan sulfate and divalent cations. These predicted binding sites were evaluated empirically by fluorescence spectroscopy and surface plasmon resonance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rest, van der, M., Garrone, R. FASEB J. 5, 28142823 (1991).Google Scholar
2. Li, Y., Lacerda, D.A., Warman, M.L., Beier, D.R., Yoshioka, H., Ninomiya, Y., Oxford, J.T., Morris, N.P., Andrikopoulos, K., Ramirez, F. Cell 80, 423430 (1995).Google Scholar
3. Bork, P. FEBS Lett. 307, 4954 (1992).Google Scholar
4. Bork, P., Downing, A.K., Kieffer, B., Campbell, I.D. Q. Rev. Biophys. 29, 119167 (1996).Google Scholar
5. Mayne, R., Brewton, R.G. Curr Opin Cell Biol. 5, 883890 (1993).Google Scholar
6. Sali, A., Blundell, T.L. J. Mol. Biol. 234, 779815 (1993).Google Scholar
7. Tisi, D., Talts, J.F., Timpl, R., Hohenester, E. EMBO J. 19, 14321440 (1993).Google Scholar
8. Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., Karplus, M. 1995. Proteins 23, 318326.Google Scholar
9. Gregory, K.E., Oxford, J.T., Chen, Y., Gambee, J. E., Gygi, S.P., Aebersold, R., Neame, P.J., Mechling, D.E., Bachinger, H.P., Morris, N.P. J. Biol. Chem. 275, 1149811506 (2000).Google Scholar
10. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J. J. Comput. Chem. 19, 16391662 (1998).Google Scholar
11. Bystroff, C., Shao, Y. Bioinformatics 18 Suppl 1, S54–S61 (1998).Google Scholar
12. Bystroff, C., Thorsson, V., Baker, D. J. Mol. Biol. 301, 173190 (2000).Google Scholar
13. Wizemann, H., Garbe, J.H.O., Friedrich, M.V.K., Timpl, R., Sasaki, T., Hohenester, E. J. Mol. Biol. 332, 635642 (2003).Google Scholar
14. Beckmann, G., Hanke, J., Bork, P., Reich, J.G. J Mol Biol. 275, 725730 (1998).Google Scholar
15. Cardin, A., Weintraub, H. Arterioscler. Thromb. Vasc. Biol. 9, 2132 (1989).Google Scholar
16. Yamashita, H., Beck, K., Kitagawa, Y. J Mol Biol. 335, 11451149 (2004).Google Scholar
17. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., Eddy, S.R. Nucleic Acids Res. 32, 138141. http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF00054 (2004).Google Scholar
18. Fichard, A., Kleman, J.P., Ruggiero, F. Matrix Biology, 14, 515531 (1995).Google Scholar
19. Pihlajamaa, T., Lankinen, H., Ylostalo, J., Valmu, L., Jaalinoja, J., Zaucke, F., Spitznagel, L., Gosling, S., Puustinen, A., Morgelin, M., Peranen, J., Maurer, P., Ala-Kokko, L., Kilpelainen, I. J Biol Chem. 279, 2426524273 (2004).Google Scholar
20. Blaschke, U.K., Eikenberry, E.F., Hulmes, D.J.S., Galla, H.-J., Bruckner, P. J. Biol. Chem. 275, 1037010378 (2000).Google Scholar