Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:29:18.830Z Has data issue: false hasContentIssue false

Modeling 1/f noise using a simple physical model based on vacancy motion*

Published online by Cambridge University Press:  21 February 2011

N. S. Klonais
Affiliation:
Departmen of Electrical Engneering, University of South Florida, Tampa, Florida
J. G. Cottle
Affiliation:
Departmen of Electrical Engneering, University of South Florida, Tampa, Florida
Get access

Abstract

A computer model is presented and used to simulate the motion of vacancies in a crystalline lattice. The lattice is modeled as a resistive array connected in series/parallel with vacancies represented as elements of high resistance in the array. Time series and spectra are generated by allowing the vacancies to move and these are consistent with actual waveforms produced by thin metal films. Simulation of temperature change yields dependencies similar to those predicted by Dutta and Horn (1979). By varying the density of vacancies the model predicts a variable Hooge parameter that saturates to a constant beyond a critical value.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Supported by Sandia National Laboratories.

References

1. Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).CrossRefGoogle Scholar
2. Duttan, P. and Horn, P. M., Rev. Mod. Phys. 53,497 (1981).CrossRefGoogle Scholar
3. Eberhard, J. W. and Horn, P. M., Phys. Rev. B, 18, 6681 (1978).CrossRefGoogle Scholar
4. Fleetwood, D. M. and Giordano, N., Phys. Rev. B, 31, 1157 (1984).CrossRefGoogle Scholar
5. Pelz, J. and Clarke, J., Phys. Rev. Lett. 55, 738 (1985).CrossRefGoogle Scholar
6. Black, R. D., Restle, P. J., and Weissman, M. B., Phys. Rev. Lett. 51, 1476 (1983).CrossRefGoogle Scholar
7. Koch, R H., Loyd, J. R., and Cronin, J., Phys. Rev. Lett. 55,2487 (1985).CrossRefGoogle Scholar
8. Scofield, J. H., Mantese, J. V., and Webb, W. W., Phys. Rev. B, 32, 736 (1985).CrossRefGoogle Scholar
9. Kogan, Sh. M and Nagaev, K. E., Soy. Phys. Solid State 24, 1921 (1982).Google Scholar
10. Robinson, F. N. H., Phys. Lett. 97A, 162 (1983).CrossRefGoogle Scholar
11. Pelz, J. and Clarke, J., Phys. Rev. B, 36, 4479 (1987).CrossRefGoogle Scholar
12. Orlov, V. B., Solid State Electronics, 35, 1827 (1992).CrossRefGoogle Scholar
13. Feng, S., Lee, P. A. and Stone, A. D., Phys. Rev. Lett. 56, 1960 (1986).CrossRefGoogle Scholar
14. Hooge, F. N., Physica B, 162 (1990).CrossRefGoogle Scholar