Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T05:28:39.975Z Has data issue: false hasContentIssue false

A Model of Superlattice Yield Stress and Hardness Enhancements

Published online by Cambridge University Press:  15 February 2011

XI Chu
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Scott A. Barnett
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

A model is presented that explains the yield stress and hardness enhancements that have been observed in superlattice thin films. The predicted strength/hardness enhancement increased with increasing superlattice period, Λ, before reaching a saturation value that depended on interface widths. The results indicate that superlattice strength/hardness depends strongly on interface widths and the difference in shear moduli of the two components for Λ values below the maximum, and on the average shear modulus for larger Λ.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1 Barnett, S. A. and Shinn, M., in Annu. Rev. Mater. Sci., 24, 481 (1994).Google Scholar
2 Shinn, M., Hultman, L., and Barnett, S. A., J. Mater. Res. 7, 901 (1992).Google Scholar
3 Helmersson, U., Todorova, S., Barnett, S. A., Sundgren, J.-E., Markert, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).Google Scholar
4 Mirkarimi, P. B., Hultman, L., and Barnett, S. A., Appl. Phys. Lett. 57, 2654 (1990).Google Scholar
5 Koehler, J. S., Physics Review B 2, 547 (1970).Google Scholar
6 Lehoczky, S. L., J. Appl. Phys. 49, 5479 (1978).Google Scholar
7 Mirkarimi, P. B., Shinn, M., Barnett, S. A., Kumar, S., and Grimsditch, M., J. Appl. Phys. 71, 4955 (1992).Google Scholar
8 Shinn, M. and Barnett, S. A., Appl. Phys. Lett. 64, 61 (1994).Google Scholar
9 Mirkarimi, P. B., Barnett, S. A., Hubbard, K. M., Jervis, T. R., and Hultman, L., J. Mater. Res. 9, 1456 (1994).Google Scholar
10 Kamat, S. V., Hirth, J. P., and Carnahan, B., Scr. Metall. 21, 1587 (1987).Google Scholar
11 Krzanowski, J. E., in Mater. Res. Soc. Symp. Proc., edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freunds, L. B., (Mater. Res. Soc., Pittsburgh, 1992), vol. 239, p. 509.Google Scholar
12 Dieter, G. E., Mechanical Metallurgy (McGraw-Hill Book Company, New York, 1986).Google Scholar
13 Taylor, G. J., J. Inst. Met. 62, 307 (1938).Google Scholar
14 Tabor, D., J. Inst. Metals 79, 1 (1951).Google Scholar
15 Head, A. K., Philos. Mag. 44, 92 (1953).Google Scholar
16 Pacheco, E. S. and Mura, T., J. Mech. Phys. Solids 17, 163 (1969).Google Scholar
17 Sevillano, J. G., in Strength of Metals and Alloys. Proc. ICSMA 5, edited by Haasen, P., Gerold, V., and Kowtorzs, G. (Pergamon Press, Oxford, 1980), p. 819.Google Scholar
18 Chu, X., Yashar, P., Wong, M. S., Sproul, W. D., and Barnett, S. A., unpublished.Google Scholar
19 j. Cahn, W., Acta. Metall. 11, 1275 (1963).Google Scholar
20 Kato, M., Mori, T., and Schwartz, L. H., Acta Met. 28, 285 (1980).Google Scholar
21 Chu, X. and Barnett, S. A., J. Appl. Phys., (1995)Google Scholar