Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:03:23.213Z Has data issue: false hasContentIssue false

A Model of Crack Propagation in a 2D Heterogeneous Material

Published online by Cambridge University Press:  10 February 2011

P. Daguier
Affiliation:
O.N.E.R.A. (OM), 29 Avenue de la Division Leclerc, B.P. 72, 92322 Châtillon Cedex, FRANCE
E. Bouchaud
Affiliation:
O.N.E.R.A. (OM), 29 Avenue de la Division Leclerc, B.P. 72, 92322 Châtillon Cedex, FRANCE
G. Lapasset
Affiliation:
O.N.E.R.A. (OM), 29 Avenue de la Division Leclerc, B.P. 72, 92322 Châtillon Cedex, FRANCE
Get access

Abstract

A continuous numerical model of pure mode I crack propagation in a bidimensional heterogeneous material is presented. This model describes the propagation of a macrocrack into a two-phases brittle material containing a finite density of second phase precipitates. The morphology of cracks produced for various mechanical and microstructural conditions is analysed. It is shown that the simulated cracks are self-affine with a roughness index ≃ 0.6 independent of the microstructure. Relevant length scales, on the contrary, strongly depend on the microstructural parameters, and indicate an optimum density leading to a maximum fracture toughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mandelbrot, B.B., Phys. Ser. 32, 257 (1985)Google Scholar
[2] Bouchaud, E., Lapasset, G. and Planes, J., Europhys. Lett. 13, 73 (1990)Google Scholar
[3] Daguier, P., Hénaux, S., Bouchaud, E. and Creuzet, F., Phys. Rev. E 53, 5637 (1995)Google Scholar
[4] Schmittbuhl, J., Gentier, S. and Roux, S., Geophys. Lett. 20, 639 (1993)Google Scholar
[5] Maloy, K.J., Hansen, A., Hinrichsen, E.L. and Roux, S., Phys. Rev. Lett. 68, 213 (1992)Google Scholar
[6] Guilloteau, E., Charrue, H., Creuzet, F., Europhys. Lett. 34, 549 (1996)Google Scholar
[7] Nakano, A., Kalia, R. and Vashishta, P., Phys. Rev. Lett., 73, 2336 (1994)Google Scholar
[8] Hansen, A., Hinrichsen, E.L. and Roux, S., Phys. Rev. Lett., 66, 2476 (1991)Google Scholar
[9] Kertesz, J., Horvath, V. and Weber, F., Fractals, 1, 67 (1993)Google Scholar
[10] Engoy, T., Maloy, K.J., Hansen, A. and Roux, S., Phys. Rev. Lett., 73, 834 (1994)Google Scholar
[11] Mandelbrot, B.B., Passoja, D.E. and Paullay, A.J., Nature (London) 308, 721 (1984)Google Scholar
[12] Mecholsky, J.J., Passoja, D.E. and Feinberg-Ringel, K.S., J. Am. Ceram. Soc. 72, 60 (1989)Google Scholar
[13] Bouchaud, E., Bouchaud, J.-P., Phys. Rev. B 50, 17752 (1994)Google Scholar
[14] Fr, L.R.F., Int. Journal of fracture 31, 233 (1986)Google Scholar
[15] Cotterell, B. and Rice, J.R., Int. journal of fracture 16, 155 (1980)Google Scholar
[16] Hutchinson, J.W., Acta Metall. 6, 1605 (1987)Google Scholar
[17] Schmittbuhl, J., Vilotte, J.P. and Roux, S., Phys. Rev. E 51, 31 (1995)Google Scholar