Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T13:04:56.656Z Has data issue: false hasContentIssue false

Model Neural Membrane Droplet Interface Bilayers from Brain Total Lipid Extract for Studying Membrane-Peptide Interactions with Amyloid-β

Published online by Cambridge University Press:  12 May 2015

Graham J. Taylor
Affiliation:
Department of Mechanical, Aerospace, and Biomedical EngineeringThe University of Tennessee, Knoxville, TN 37920, U.S.A.
Stephen A. Sarles*
Affiliation:
Department of Mechanical, Aerospace, and Biomedical EngineeringThe University of Tennessee, Knoxville, TN 37920, U.S.A.
Get access

Abstract

Droplet interface bilayers (DIBs) are formed using brain total lipid extract (BTLE) to create a synthetic bilayer whose lipid composition mimics that of neural cells. The electrical properties of BTLE DIBs, specifically membrane resistance, capacitance, and rupture potential, are determined and compared to the properties of bilayers formed using DPhPC, the most common lipid within the growing DIB field. There is no significant difference in the resistance or rupture potential of BTLE and DPhPC bilayers, for instance with average nominal resistance over 200 GΩ and rupture potential around 200 mV. In electrical measurements with either DPhPC or BTLE bilayers, applied voltages of up to ±150 mV yield low levels of leakage current. Upon interaction with the pore-forming amyloid-beta (Aβ) peptide, both bilayers display sudden significant voltage-dependent increases in conductance with characteristic threshold voltages well below 150 mV. Discrete single-channel type events are observed in the case of Aβ-BTLE whereas disordered fluctuating conductance is observed with Aβ-DPhPC. Circular dichroism is measured for Aβ incubated with BTLE and DPhPC liposomes, as well as pure Aβ, at a range of temperatures over a period of several weeks. Changes in secondary structure of liposome-bound and pure Aβ are significantly affected by both lipid type and temperature. A key finding includes the 100% conversion of Aβ to alpha-helical confirmation within 24 hours when incubated with liposomes (of either type) at physiologically relevant 37°C. The 100% alpha-helical Aβ is maintained for up to 2 weeks at 37°C when incubated with liposomes, although other structures begin to emerge after the 14 day mark. Between 14-31 days after reconstitution, Aβ incubated at 37C with BTLE bilayers displays longer lasting alpha-helical content than DPhPC. At the same temperature, pure Aβ is 100% alpha helical only at the 1 day mark with apparent restructuring from day 2 through day 31. Refrigerated Ab samples do not display 100% alpha-helical structure across the entire 31 day testing period. The differences observed between BTLE and DPhPC in both electrophysiological and spectroscopic experiments may be a result of phase separations or other variations in membrane fluidity that result from the use of a homogeneous total lipid extract. Time and temperature play essential roles in the aggregation and restructuring of potentially toxic Aβ oligomers, and there is motivation for further efforts to elicit the mechanistic differences in interactions of Ab with BTLE compared to DPhPC.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sreerama, N.; Woody, R. W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Analytical Biochemistry 2000, 287 (2), 252260.CrossRefGoogle ScholarPubMed
Narayan, P.; Ganzinger, K. A.; McColl, J.; Weimann, L.; Meehan, S.; Qamar, S.; Carver, J. A.; Wilson, M. R.; St. George-Hyslop, P.; Dobson, C. M.; Klenerman, D. Single Molecule Characterization of the Interactions between Amyloid-β Peptides and the Membranes of Hippocampal Cells. Journal of the American Chemical Society 2013, 135 (4), 14911498.CrossRefGoogle ScholarPubMed
Ikeda, K.; Yamaguchi, T.; Fukunaga, S.; Hoshino, M.; Matsuzaki, K. Mechanism of Amyloid β-Protein Aggregation Mediated by GM1 Ganglioside Clusters. Biochemistry 2011, 50 (29), 64336440.CrossRefGoogle ScholarPubMed
Jang, H.; Arce, F. T.; Capone, R.; Ramachandran, S.; Lal, R.; Nussinov, R. Misfolded Amyloid Ion Channels Present Mobile β-Sheet Subunits in Contrast to Conventional Ion Channels. Biophysical Journal 2009, 97 (11), 30293037.CrossRefGoogle ScholarPubMed
Alarcón, J. M.; Brito, J. A.; Hermosilla, T.; Atwater, I.; Mears, D.; Rojas, E. Ion channel formation by Alzheimer's disease amyloid β-peptide (Aβ40) in unilamellar liposomes is determined by anionic phospholipids. Peptides 2006, 27 (1), 95104.CrossRefGoogle ScholarPubMed
Bokvist, M. Membrane mediated aggregation of amyloid-β protein: a potential key event in Alzheimer's disease. Umeå University 2007.Google Scholar
Choo-Smith, L.-P. i.; Surewicz, W. K. The interaction between Alzheimer amyloid β(1–40) peptide and ganglioside GM1-containing membranes. FEBS Letters 1997, 402 (2–3), 9598.CrossRefGoogle ScholarPubMed
Choucair, A.; Chakrapani, M.; Chakravarthy, B.; Katsaras, J.; Johnston, L. J. Preferential accumulation of Aβ(1−42) on gel phase domains of lipid bilayers: An AFM and fluorescence study. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768 (1), 146154.CrossRefGoogle ScholarPubMed
de Planque, M. R. R.; Raussens, V.; Contera, S. A.; Rijkers, D. T. S.; Liskamp, R. M. J.; Ruysschaert, J.-M.; Ryan, J. F.; Separovic, F.; Watts, A. β-Sheet Structured β-Amyloid(1-40) Perturbs Phosphatidylcholine Model Membranes. Journal of Molecular Biology 2007, 368 (4), 982997.CrossRefGoogle ScholarPubMed
Gibson Wood, W.; Eckert, G. P.; Igbavboa, U.; Müller, W. E. Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer's disease. Biochimica et Biophysica Acta (BBA) - Biomembranes 2003, 1610 (2), 281290.CrossRefGoogle ScholarPubMed
Howland, D. S.; Trusko, S. P.; Savage, M. J.; Reaume, A. G.; Lang, D. M.; Hirsch, J. D.; Maeda, N.; Siman, R.; Greenberg, B. D.; Scott, R. W.; Flood, D. G. Modulation of Secreted β-Amyloid Precursor Protein and Amyloid β-Peptide in Brain by Cholesterol. Journal of Biological Chemistry 1998, 273 (26), 1657616582.CrossRefGoogle ScholarPubMed
Sani, M.-A.; Gehman, J. D.; Separovic, F. Lipid matrix plays a role in Abeta fibril kinetics and morphology. FEBS Letters 2011, 585 (5), 749754.CrossRefGoogle Scholar
Tashima, Y.; Oe, R.; Lee, S.; Sugihara, G.; Chambers, E. J.; Takahashi, M.; Yamada, T. The Effect of Cholesterol and Monosialoganglioside (GM1) on the Release and Aggregation of Amyloid β-Peptide from Liposomes Prepared from Brain Membrane-like Lipids. Journal of Biological Chemistry 2004, 279 (17), 1758717595.CrossRefGoogle ScholarPubMed
Terzi, E.; Hölzemann, G.; Seelig, J. Interaction of Alzheimer β-Amyloid Peptide(1−40) with Lipid Membranes†. Biochemistry 1997, 36 (48), 1484514852.CrossRefGoogle Scholar
Valincius, G.; Heinrich, F.; Budvytyte, R.; Vanderah, D. J.; McGillivray, D. J.; Sokolov, Y.; Hall, J. E.; Lösche, M. Soluble Amyloid ²-Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity. Biophysical Journal 2008, 95 (10), 48454861.CrossRefGoogle ScholarPubMed
Wakabayashi, M.; Okada, T.; Kozutsumi, Y.; Matsuzaki, K. GM1 ganglioside-mediated accumulation of amyloid β-protein on cell membranes. Biochemical and Biophysical Research Communications 2005, 328 (4), 10191023.CrossRefGoogle ScholarPubMed
Wood, W. G.; Schroeder, F.; Igbavboa, U.; Avdulov, N. A.; Chochina, S. V. Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiology of aging 2002, 23 (5), 685694.CrossRefGoogle ScholarPubMed
Yanagisawa, K.; Matsuzaki, K. Cholesterol-Dependent Aggregation of Amyloid β-Protein. Annals of the New York Academy of Sciences 2002, 977 (1), 384386.CrossRefGoogle ScholarPubMed
Zhao, H.; Tuominen, E. K. J.; Kinnunen, P. K. J. Formation of Amyloid Fibers Triggered by Phosphatidylserine-Containing Membranes†. Biochemistry 2004, 43 (32), 1030210307.CrossRefGoogle Scholar
Micelli, S.; Meleleo, D.; Picciarelli, V.; Gallucci, E. Effect of Sterols on β-Amyloid Peptide (AβP 1–40) Channel Formation and their Properties in Planar Lipid Membranes. Biophysical Journal 2004, 86 (4), 22312237.CrossRefGoogle ScholarPubMed
Taylor, G. J.; Sarles, S. A. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Langmuir 2014.Google ScholarPubMed
Jang, H.; Connelly, L.; Teran Arce, F.; Ramachandran, S.; Kagan, B. L.; Lal, R.; Nussinov, R. Mechanisms for the Insertion of Toxic, Fibril-like β-Amyloid Oligomers into the Membrane. Journal of Chemical Theory and Computation 2012, 9 (1), 822833.CrossRefGoogle ScholarPubMed
Sarles, S. A.; Leo, D. J. Regulated Attachment Method for Reconstituting Lipid Bilayers of Prescribed Size within Flexible Substrates. Analytical Chemistry 2010, 82 (3), 959966.CrossRefGoogle ScholarPubMed
White, S.; Chang, W. Voltage dependence of the capacitance and area of black lipid membranes. Biophysical journal 1981, 36 (2), 449.CrossRefGoogle ScholarPubMed
White, S. H. A study of lipid bilayer membrane stability using precise measurements of specific capacitance Biophysical Journal 1970, 10 (12), 11271148.CrossRefGoogle ScholarPubMed
Baba, T.; Toshima, Y.; Minamikawa, H.; Hato, M.; Suzuki, K.; Kamo, N. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1421 (1), 91102.CrossRefGoogle ScholarPubMed
Punnamaraju, S.; Steckl, A. J. Voltage Control of Droplet Interface Bilayer Lipid Membrane Dimensions. Langmuir 2010, 27 (2), 618626.CrossRefGoogle ScholarPubMed
Gross, L. C. M.; Heron, A. J.; Baca, S. C.; Wallace, M. I. Determining Membrane Capacitance by Dynamic Control of Droplet Interface Bilayer Area. Langmuir 2011, 27 (23), 1433514342.CrossRefGoogle ScholarPubMed
Römer, W.; Steinem, C. Impedance Analysis and Single-Channel Recordings on Nano-Black Lipid Membranes Based on Porous Alumina. Biophysical Journal 2004, 86 (2), 955965.CrossRefGoogle ScholarPubMed
Cafiso, D. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annual review of biophysics and biomolecular structure 1994, 23 (1), 141165.CrossRefGoogle ScholarPubMed
Heimburg, T. Lipid ion channels. Biophysical Chemistry 2010, 150 (1–3), 222.CrossRefGoogle ScholarPubMed
Guan, Z. Discovering novel brain lipids by liquid chromatography/tandem mass spectrometry. Journal of Chromatography B 2009, 877 (26), 28142821.CrossRefGoogle ScholarPubMed
Wong, P. T.; Schauerte, J. A.; Wisser, K. C.; Ding, H.; Lee, E. L.; Steel, D. G.; Gafni, A. Amyloid-β Membrane Binding and Permeabilization are Distinct Processes Influenced Separately by Membrane Charge and Fluidity. Journal of Molecular Biology 2009, 386 (1), 8196.CrossRefGoogle ScholarPubMed