Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T13:01:26.305Z Has data issue: false hasContentIssue false

Möbius Inversion and Mechanical Properties of Ni3Al

Published online by Cambridge University Press:  22 February 2011

Nan-Xian Chen
Affiliation:
Institute for Applied Physics Beijing University of Sci. and Tech., 100083,China
Mi Li
Affiliation:
Institute for Applied Physics Beijing University of Sci. and Tech., 100083,China
Shao-Jun Liu
Affiliation:
Institute for Applied Physics Beijing University of Sci. and Tech., 100083,China
Zhao-Duo Chen
Affiliation:
Institute for Applied Physics Beijing University of Sci. and Tech., 100083,China
Get access

Abstract

In this work, a very abstract formula from number theory has been applied to solving the practical problems related to the important industrial material Ni3Al from the microscopic point of view.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Schroeder, M.R., Number Theory in Science and Communication, second English edition, corrected printing, Springer-Verlag, New York (1990)Google Scholar
[2] Chen, N.X., Phys. Rev. Lett., 64(1990)1193 Google Scholar
[3] Chen, N.X. and Chen, Y. and Li, G.Y., Phys. Lett. A149(1990)357.Google Scholar
[4] Chen, N.X. and Ren, G.B., Phys. Lett. A160(1991)319.Google Scholar
[5] Chen, N.X. and Ren, G.B., Phys. Rev. B45(1992)8177.Google Scholar
[6] Mookerjee, A., Chen, N.X., Kumar, V. and Satter, A., J.Phys: condensed Matter, 4(1992)2439.Google Scholar
[7] Li, M., Liu, S.J., Chen, N.X. and Teng, Y.G. et al, Phys. Lett. A169(1992) 364.Google Scholar
[8] Xie, T.L., Goldsmith, P.F. and Zhou, W., AstrophysJ., 371(1991)L81.Google Scholar
[9] Xie, T.L., Goldsmith, P.F., Shell, R.L. and Zhou, W., AstrophysJ.,402(1993) 216.Google Scholar
[10] Liu, S.J. and Chen, N.X., J.Phys:cond.matt. 5(1993)4381.Google Scholar
[11] Li, M., Liu, S.J. and Chen, N.X., Phys.Lett. A177(1993)134.Google Scholar
[12] Ren, G.B. and Chen, N.X., JMMM 123(1993)L25.Google Scholar
[13] Maddox, J., Nature(London) 344(1990)377.Google Scholar
[14] Hughes, B.D., Frankel, N.E. and Ninham, B.W., Phys. Rev. A42(1990) 3643.Google Scholar
[15] Ren, S.Y. and Dow, J.D., Phys. Lett., A154(1991)215.Google Scholar
[16] Carlsson, A.E., Gelatt, C.D. and Ehrenreich, H., Phil. Mag., A41 (1980)241.Google Scholar
[17] Rose, J.H.,Smith, J.R.,Guinca, F. and Ferrante, J., Phys.Rev. B29(1984)2963.Google Scholar
[18] Kittel, C., Introduction to Solid State Physics, 5th ed., Wiley, New York(1976).Google Scholar
[19] Stassis, S., Phys.Stat.Sol.,A64(1981)335 Google Scholar
[20] Hultgren, R.,Desai, P.D.,Hawkins, D.T.,Gleiser, M. and Kelley, K., Selected Values of the Theormodynamic Properties of Binary Alloys, ASM, Metals Park, Ohio(1973).Google Scholar
[21] Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties, MIT Press, Cambridge(1971)Google Scholar
[22] Koehler, J.S., In Vacancies and Interstitials in Metals, edited by Seeger, A. at al.,North Holland, Amsterdam(1970),p175.Google Scholar
[23] Koehler, J.S., Vacancies and Interstitials in Metals, edited by Seeger, A. et al., North Holland, Amsterdam(1970), p.175.Google Scholar