Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T05:16:56.574Z Has data issue: false hasContentIssue false

Mixed Conducting and Cathodic Properties of Zirconia-Nio Mixture

Published online by Cambridge University Press:  15 February 2011

Y. M. Park
Affiliation:
Pohang University of Science and Technology, Dept. of Materials Science and Engineering, Pohang., 790-784, Korea
G. M. Choi
Affiliation:
Pohang University of Science and Technology, Dept. of Materials Science and Engineering, Pohang., 790-784, Korea
Get access

Abstract

Absract

Stabilized zirconia-NiO mixture was chosen as a representative of ionic-electronic composite and the effect of mixture composition on the mixed conducting properties were studied. The measurements of oxygen partial-pressure dependence of conductivity and Hebb-Wagner polarization enabled to determine the electronic contribution to the total conduction in a wide composition range. In ion conduction region, electronic conductivity increased continuously with NiO content. The overpotentials of screen-printed YSZ-NiO electrode on YSZ electrolyte were measured and found to decrease with increasing NiO content and thus with the estimated electronic conductivity of porous electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mizusaki, J., Tagawa, H., Tsuneyoshi, K., Sawata, A., Katou, M., and Hirano, K., Denki Kagaku, 58 [6], 520 (1990).Google Scholar
2. Tsai, T. and Barnett, S. A., Solid State Ionics, 93, 207 (1997).Google Scholar
3. Ma, B., Balachandran, U., Park, J. H., and Segre, C. U., J. Electrochem. Soc., 143 [5], 1736 (1996).Google Scholar
4. Chen, C. H., Kruidhof, H., Bouwmeester, H. J. M., and Burggraaf, A. J., J. Appl. Electrochem., 27, 71 (1997).Google Scholar
5. Jun, S. T. and Choi, G. M., J. Am. Ceram. Soc., 81 [3], 695 (1998).Google Scholar
6. Kobayashi, K., Kai, Y., Yamaguchi, S., Fukatsu, N., Kawashima, T. and Iguchi, Y., Solid State Ionics, 93, 193 (1997).Google Scholar
7. Han, P. and Worrell, W. L.. J. Electrochem. Soc., 142 [12], 4235 (1995).Google Scholar
8. Kawada, T., Sakai, N., Yokokawa, H. and Dokiya, M., Solid State Ionics, 53–56, 418 (1992).Google Scholar
9. Cales, B. and Baumard, J. F., J. Electrochem. Soc., 131 [10], 2407 (1984).Google Scholar
10. Gauckler, L. J. and Sasaki, K., Solid State Ionics, 75, 203 (1995).Google Scholar
11. Sasaki, K., Bohac, P., and Gauckler, L. J. in Proceedings of the Third International Symposium on Solid Oxide Fuel Cells, edited by Singhal, S. C. and Iwahara, H. (Electrochem. Soc., Pennington, NJ, 1993) pp. 288300.Google Scholar
12. Tare, V. B., Mehrotra, G. M. and Wagner, J. B. Jr., Solid State Ionics, 18–19, 747 (1986).Google Scholar
13. Badwal, S. P. S. and Nardella, N., Solid State Ionics, 40–41, 878 (1990).Google Scholar
14. Wang, D. Y. and Nowick, A. S., J. Electrochem. Soc., 126 [7], 1155 (1979).Google Scholar
15. Osburn, C. M. and Vest, R. W.. J. Phys. Chem. Solids, 32, 1331 (1971).Google Scholar
16. Mitoff, S. P., J. Chem. Phys, 35 [3], 882, (1961).Google Scholar
17. Huang, X. J. and Weppner, W., J. Chem. Soc., Faraday Trans., 92, 2173, (1996).Google Scholar
18. Maier, J., Ber. Bunsenges. Phys. Chem., 93, 1468 (1989).Google Scholar
19. Maier, J., Ber. Bunsenges. Phys. Chem., 93, 1474 (1989).Google Scholar
20. Wu, Z. and Liu, M., Solid State Ionics, 93, 65 (1997).Google Scholar