Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T20:29:07.724Z Has data issue: false hasContentIssue false

Mixed Approach to Incorporate Self-Consistency into Order-N LCAO Methods

Published online by Cambridge University Press:  10 February 2011

Pablo Ordejon
Affiliation:
Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo, Spain.
E. Artacho
Affiliation:
Departamento de Fisica de Materia Condensada, Universidad Aut6noma de Madrid, 28049 Madrid, Spain.
J. M. Soler
Affiliation:
Departamento de Fisica de Materia Condensada, Universidad Aut6noma de Madrid, 28049 Madrid, Spain.
Get access

Abstract

We present a method for selfconsistent Density Functional Theory calculations in which the effort required is proportional to the size of the system, thus allowing the aplication to problems with a very large size. The method is based on the LCAO approximation, and uses a mixed approach to obtain the Hamiltonian integrals between atomic orbitals with Order-N effort. We show the performance and the convergence properties of the method in several silicon and carbon systems, and in a DNA periodic chain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ordejón, P., Drabold, D. A., Martin, R. M. and Grumbach, M. P., Phys. Rev. B 51, 1456 (1995), and references therein.Google Scholar
2. Bachelet, G. B., Hamman, D. R. and Schlüter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
3. Perdew, J. and Zunger, A., Phys. Rev. B 23 5048 (1981).Google Scholar
4. Sankey, O. F. and Niklewski, D. J., Phys. Rev. B 40, 3979 (1989).Google Scholar
5. Sanchez-Portal, D., Artacho, E. and Soler, J. M., Solid State Commun. 95, 685 (1995), and to be published.Google Scholar
6. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vettering, W. T., Numerical Recipes, Cambridge University, New York, 1989.Google Scholar
7. Kim, J., Mauri, F. and Galli, G., Phys. Rev. B. 52, 1640 (1995).Google Scholar
8. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
9. Yannoni, C. S. et al., J. Am. Chem. Soc. 113, 3190 (1991).Google Scholar
10. Troullier, N. and Martins, J. L., Phys. Rev. B 46, 1754 (1992), and references therein.Google Scholar
11. Lewis, J. P., Sankey, O. F. and Ordejón, P., submitted to Phys. Rev. Lett.Google Scholar